CLML Common Lisp Machine Learning

Table of Contents

1 Overview

The CLML Machine-Learning is a high performance and large scale statistical machine learning package written in Common Lisp developed by MSI.

2 Installation

2.1 Requirements

  • Language: SBCL, Clozure Common Lisp, Allegro or Lispworks
  • Platform: Posix compatibile platforms (Windows, Linux, BSD and derivatives)
  • Optionally Intel Math Kernel Library
  • ASDF3 and optionally Quicklisp (This document assumes Quicklisp)

Currently development is taking place mostly on SBCL. For the near future SBCL is most stable platform.

2.2 Installation Notes

2.2.1 Obtaining code

Code can be obtained by one of the following methods:

  • Clone this repository with:
git clone https://github.com/mmaul/clml.git

Or download zip archive at

https://github.com/mmaul/clml/archive/master.zip

2.2.2 Installing

2.2.2.1 For Quicklisp **
  1. Place code in ~/quicklisp/local-projects
  2. Start LISP and enter (ql:quickload :clml)
2.2.2.2 For ASDF3 only (Non quicklisp users)
  1. Place in a location on your ASDF search path path such as ~/common-lisp
  2. Start LISP and enter (asdf:load-system :clml)

3 Loading/Using the library

3.1 Sample Data

The sample datasets are located outside the CLML repository. Fortunately CLML is able to download sample datasets from remote sites via HTTP and HTTPS via the clml.utility.data:fetch function. Shown below is an example:

(clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/datafile.csv")

The clml.utility.data:fetch function downloads the file to a cache location and returns the path to the downloaded file. Therefore anywhere a path to a file is required the output from clml.utility.data:fetch can be provided instead.

The contents of the Sample dataset repository can be found at:

3.2 Usage

This library is organized as a hierarchical tree of systems.

  • clml
  • clml.association-rule
    • clml.association-rule
  • clml.classifiers
    • clml.classifiers.linear-regression
    • clml.classifiers.logistic-regression
    • clml.classifiers.nbayes
  • clml-clml.statistics
    • clml-clml.statistics
  • clml.clustering
    • clml.clustering.cluster-validation
    • clml.clustering.hc
    • clml.clustering.k-means2
    • clml.clustering.nmf
    • clml.clustering.optics
    • clml.clustering.optics-speed
    • clml.clustering.spectral-clustering
  • clml.decision-tree
    • clml.decision-tree.decision-tree
    • clml-decision-tree.random-forest
  • clml.graph
    • clml.graph.graph-anomaly-detection
    • clml.graph.graph-centrality
    • clml.graph.graph-utils
    • clml.graph.read-graph
    • clml.graph.shortest-path
  • clml.nearest-search
    • clml.nearest-search.k-nn
    • clml.nearest-search.k-nn-new
    • clml.nearest-search.nearest
  • clml.nonparameteric
    • clml.nonparameteric.statistics
    • clml.nonparametric.blocked-hdp-hmm
    • clml.nonparametric.dpm
    • clml.nonparametric.ftm
    • clml.nonparametric.hdp
    • clml.nonparametric.hdp-hmm
    • clml.nonparametric.hdp-hmm
    • clml.nonparametric.hdp-lda
    • clml.nonparametric.ihmm
    • clml.nonparametric.lfm
    • clml.nonparametric.sticky-hdp-hmm
    • clml.numeric.fast-fourier-transform
  • clml.pca
    • clml.pca
  • clml.som
    • clml.som
  • clml.statistics
    • clml.statistics
    • clml.statistics.rand
  • clml.svm
    • clml.svm.mu
    • clml.svm.one-class
    • clml.svm.pwss3
    • clml.svm.smo
    • clml.svm.svr
    • clml.svm.wss3
  • clml.time-series
    • clml.time-series.anomaly-detection
    • clml.time-series.autoregression
    • clml.time-series.burst-detection
    • clml.time-series.changefinder
    • clml.time-series.exponential-smoothing
    • clml.time-series.read-data
    • clml.time-series.state-space
    • clml.time-series.statistics
    • clml.time-series.util
  • clml.utility
    • clml.utility.csv
    • clml.utility.priority-que
  • fork-future
  • future
  • hjs
    • hjs.learn.k-means
    • hjs.learn.read-data
    • hjs.learn.vars
    • hjs.util.eigensystems
    • hjs.util.matrix
    • hjs.util.meta
    • hjs.util.missing-value
    • hjs.util.vector
  • lapack

Each system can be loaded independantly or the the clml system can be loaded which contains dependencies to all child system definitions.

This library requires that default reader float for mat is set to double-float. This should be done before loading the systems.

(setf *read-default-float-format* 'double-float)
  • Example below is using CLML.EXTRAS

Here is a quick demonstration:

CL-USER (ql:quickload :clml)

CL-USER (clml.text.utilities:calculate-levenshtein-similarity "Howdy" "doody")
0.6
CL-USER 
CL-USER (setf *syobu* (hjs.learn.read-data:read-data-from-file 
           (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/syobu.csv")
           :type :csv :csv-type-spec '(string integer integer integer integer)))


#<HJS.LEARN.READ-DATA:UNSPECIALIZED-DATASET >
DIMENSIONS: 種類 | がく長 | がく幅 | 花びら長 | 花びら幅
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
NUMBER OF DIMENSIONS: 5
DATA POINTS: 150 POINTS

CL-USER (setf *tree* (clml.decision-tree.decision-tree:make-decision-tree *syobu* "種類"))


(((("花びら長" . 30)
   (("花びら幅" . 18) ("花びら幅" . 23) ("花びら幅" . 20) ("花びら幅" . 19) ("花びら幅" . 25)
    ("花びら幅" . 24) ("花びら幅" . 21) ("花びら幅" . 14) ("花びら幅" . 15) ("花びら幅" . 22)
     ("花びら幅" . 16) ("花びら幅" . 17) ("花びら幅" . 13) ("花びら幅" . 11) ("花びら幅" . 12)
  ...
  (("Virginica" . 50) ("Versicolor" . 50) ("Setosa" . 50))
  ((149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131
  ...
 (((("花びら幅" . 18)
    (("花びら幅" . 23) ("花びら幅" . 20) ("花びら幅" . 19) ("花びら幅" . 25) ("花びら幅" . 24)
     ("花びら幅" . 21) ("花びら幅" . 14) ("花びら幅" . 15) ("花びら幅" . 22) ("花びら幅" . 16)
     ("花びら幅" . 17) ("花びら幅" . 13) ("花びら幅" . 11) ("花びら幅" . 12) ("花びら幅" . 10)
 ...

)))
CL-USER    
CL-USER  (clml.decision-tree.decision-tree:print-decision-tree *tree*)
    [30 <= 花びら長?]((Virginica . 50) (Versicolor . 50) (Setosa . 50))
       Yes->[18 <= 花びら幅?]((Versicolor . 50) (Virginica . 50))
         Yes->[49 <= 花びら長?]((Virginica . 45) (Versicolor . 1))
             Yes->((Virginica . 43))
             No->[60 <= がく長?]((Versicolor . 1) (Virginica . 2))
                Yes->((Virginica . 2))
                No->((Versicolor . 1))
          No->[50 <= 花びら長?]((Virginica . 5) (Versicolor . 49))
             Yes->[16 <= 花びら幅?]((Versicolor . 2) (Virginica . 4))
                Yes->[70 <= がく長?]((Virginica . 1) (Versicolor . 2))
                   Yes->((Virginica . 1))
                   No->((Versicolor . 2))
                No->((Virginica . 3))
             No->[17 <= 花びら幅?]((Versicolor . 47) (Virginica . 1))
                Yes->((Virginica . 1))
                  No->((Versicolor . 47))
       No->((Setosa . 50))

4 Machine-Learning Packages

The CLML package hierarchy is to two groups primary and supporting. The primary group contains the CLML functionality. The secondary group supports the CLML library. The primary group consists of top level package hierarchies:

  • CLML
  • HJS

The HJS package hierarchy contains for the most part utilities and base functionality such as dataset access, matrix and vector manipulation, missing value handling, and sum algorithimic support for k-means and eigensystems. The CLML package hierarchy contains the high level functionality.

The secondary package hierarchies consist of

  • blas
  • lapack
  • future [Located in addons]
  • fork-future [Located in addons]
  • blas-ffi (Intel MKL blas interface) [Located in addons]
  • lapack-ffi (Intel MKL blas interface) [Located in addons]

For Intel MKL enablement BLASFFI and LAPACK-FFI must be loaded before loading CLML

At this time not all packages contain detailed documentation please refer to the source and tests contained in the CLML.EXTRAS system.

5 Package: blas

  • Uses: common-lisp
  • Used by: clml.clustering.nmf, hjs.util.eigensystems, hjs.util.matrix, lapack

5.1 Description

5.2 External Symbols

5.2.1 External Functions


5.2.1.1 Function: dasum
5.2.1.1.1 Syntax
(dasum n dx incx)
5.2.1.1.2 Description

5.2.1.2 Function: daxpy
5.2.1.2.1 Syntax
(daxpy n da dx incx dy incy)
5.2.1.2.2 Description

5.2.1.3 Function: dcabs1
5.2.1.3.1 Syntax
(dcabs1 z)
5.2.1.3.2 Description

5.2.1.4 Function: dcopy
5.2.1.4.1 Syntax
(dcopy n dx incx dy incy)
5.2.1.4.2 Description

5.2.1.5 Function: ddot
5.2.1.5.1 Syntax
(ddot n dx incx dy incy)
5.2.1.5.2 Description

5.2.1.6 Function: dgbmv
5.2.1.6.1 Syntax
(dgbmv trans m n kl ku alpha a lda x incx beta y incy)
5.2.1.6.2 Description

5.2.1.7 Function: dgemm
5.2.1.7.1 Syntax
(dgemm transa transb m n k alpha a lda b ldb$ beta c ldc)
5.2.1.7.2 Description

5.2.1.8 Function: dgemv
5.2.1.8.1 Syntax
(dgemv trans m n alpha a lda x incx beta y incy)
5.2.1.8.2 Description

5.2.1.9 Function: dger
5.2.1.9.1 Syntax
(dger m n alpha x incx y incy a lda)
5.2.1.9.2 Description

5.2.1.10 Function: dnrm2
5.2.1.10.1 Syntax
(dnrm2 n x incx)
5.2.1.10.2 Description

5.2.1.11 Function: drot
5.2.1.11.1 Syntax
(drot n dx incx dy incy c s)
5.2.1.11.2 Description

5.2.1.12 Function: drotg
5.2.1.12.1 Syntax
(drotg da db c s)
5.2.1.12.2 Description

5.2.1.13 Function: dsbmv
5.2.1.13.1 Syntax
(dsbmv uplo n k alpha a lda x incx beta y incy)
5.2.1.13.2 Description

5.2.1.14 Function: dscal
5.2.1.14.1 Syntax
(dscal n da dx incx)
5.2.1.14.2 Description

5.2.1.15 Function: dspmv
5.2.1.15.1 Syntax
(dspmv uplo n alpha ap x incx beta y incy)
5.2.1.15.2 Description

5.2.1.16 Function: dspr
5.2.1.16.1 Syntax
(dspr uplo n alpha x incx ap)
5.2.1.16.2 Description

5.2.1.17 Function: dspr2
5.2.1.17.1 Syntax
(dspr2 uplo n alpha x incx y incy ap)
5.2.1.17.2 Description

5.2.1.18 Function: dswap
5.2.1.18.1 Syntax
(dswap n dx incx dy incy)
5.2.1.18.2 Description

5.2.1.19 Function: dsymm
5.2.1.19.1 Syntax
(dsymm side uplo m n alpha a lda b ldb$ beta c ldc)
5.2.1.19.2 Description

5.2.1.20 Function: dsymv
5.2.1.20.1 Syntax
(dsymv uplo n alpha a lda x incx beta y incy)
5.2.1.20.2 Description

5.2.1.21 Function: dsyr
5.2.1.21.1 Syntax
(dsyr uplo n alpha x incx a lda)
5.2.1.21.2 Description

5.2.1.22 Function: dsyr2
5.2.1.22.1 Syntax
(dsyr2 uplo n alpha x incx y incy a lda)
5.2.1.22.2 Description

5.2.1.23 Function: dsyr2k
5.2.1.23.1 Syntax
(dsyr2k uplo trans n k alpha a lda b ldb$ beta c ldc)
5.2.1.23.2 Description

5.2.1.24 Function: dsyrk
5.2.1.24.1 Syntax
(dsyrk uplo trans n k alpha a lda beta c ldc)
5.2.1.24.2 Description

5.2.1.25 Function: dtbmv
5.2.1.25.1 Syntax
(dtbmv uplo trans diag n k a lda x incx)
5.2.1.25.2 Description

5.2.1.26 Function: dtbsv
5.2.1.26.1 Syntax
(dtbsv uplo trans diag n k a lda x incx)
5.2.1.26.2 Description

5.2.1.27 Function: dtpmv
5.2.1.27.1 Syntax
(dtpmv uplo trans diag n ap x incx)
5.2.1.27.2 Description

5.2.1.28 Function: dtpsv
5.2.1.28.1 Syntax
(dtpsv uplo trans diag n ap x incx)
5.2.1.28.2 Description

5.2.1.29 Function: dtrmm
5.2.1.29.1 Syntax
(dtrmm side uplo transa diag m n alpha a lda b ldb$)
5.2.1.29.2 Description

5.2.1.30 Function: dtrmv
5.2.1.30.1 Syntax
(dtrmv uplo trans diag n a lda x incx)
5.2.1.30.2 Description

5.2.1.31 Function: dtrsm
5.2.1.31.1 Syntax
(dtrsm side uplo transa diag m n alpha a lda b ldb$)
5.2.1.31.2 Description

5.2.1.32 Function: dtrsv
5.2.1.32.1 Syntax
(dtrsv uplo trans diag n a lda x incx)
5.2.1.32.2 Description

5.2.1.33 Function: dzasum
5.2.1.33.1 Syntax
(dzasum n zx incx)
5.2.1.33.2 Description

5.2.1.34 Function: dznrm2
5.2.1.34.1 Syntax
(dznrm2 n x incx)
5.2.1.34.2 Description

5.2.1.35 Function: icamax
5.2.1.35.1 Syntax
(icamax n cx incx)
5.2.1.35.2 Description

5.2.1.36 Function: idamax
5.2.1.36.1 Syntax
(idamax n dx incx)
5.2.1.36.2 Description

5.2.1.37 Function: isamax
5.2.1.37.1 Syntax
(isamax n sx incx)
5.2.1.37.2 Description

5.2.1.38 Function: izamax
5.2.1.38.1 Syntax
(izamax n zx incx)
5.2.1.38.2 Description

5.2.1.39 Function: lsame
5.2.1.39.1 Syntax
(lsame ca cb)
5.2.1.39.2 Description

5.2.1.40 Function: xerbla
5.2.1.40.1 Syntax
(xerbla srname info)
5.2.1.40.2 Description

5.2.1.41 Function: zaxpy
5.2.1.41.1 Syntax
(zaxpy n za zx incx zy incy)
5.2.1.41.2 Description

5.2.1.42 Function: zcopy
5.2.1.42.1 Syntax
(zcopy n zx incx zy incy)
5.2.1.42.2 Description

5.2.1.43 Function: zdotc
5.2.1.43.1 Syntax
(zdotc n zx incx zy incy)
5.2.1.43.2 Description

5.2.1.44 Function: zdotu
5.2.1.44.1 Syntax
(zdotu n zx incx zy incy)
5.2.1.44.2 Description

5.2.1.45 Function: zdscal
5.2.1.45.1 Syntax
(zdscal n da zx incx)
5.2.1.45.2 Description

5.2.1.46 Function: zgbmv
5.2.1.46.1 Syntax
(zgbmv trans m n kl ku alpha a lda x incx beta y incy)
5.2.1.46.2 Description

5.2.1.47 Function: zgemm
5.2.1.47.1 Syntax
(zgemm transa transb m n k alpha a lda b ldb$ beta c ldc)
5.2.1.47.2 Description

5.2.1.48 Function: zgemv
5.2.1.48.1 Syntax
(zgemv trans m n alpha a lda x incx beta y incy)
5.2.1.48.2 Description

5.2.1.49 Function: zgerc
5.2.1.49.1 Syntax
(zgerc m n alpha x incx y incy a lda)
5.2.1.49.2 Description

5.2.1.50 Function: zgeru
5.2.1.50.1 Syntax
(zgeru m n alpha x incx y incy a lda)
5.2.1.50.2 Description

5.2.1.51 Function: zhbmv
5.2.1.51.1 Syntax
(zhbmv uplo n k alpha a lda x incx beta y incy)
5.2.1.51.2 Description

5.2.1.52 Function: zhemm
5.2.1.52.1 Syntax
(zhemm side uplo m n alpha a lda b ldb$ beta c ldc)
5.2.1.52.2 Description

5.2.1.53 Function: zhemv
5.2.1.53.1 Syntax
(zhemv uplo n alpha a lda x incx beta y incy)
5.2.1.53.2 Description

5.2.1.54 Function: zher
5.2.1.54.1 Syntax
(zher uplo n alpha x incx a lda)
5.2.1.54.2 Description

5.2.1.55 Function: zher2
5.2.1.55.1 Syntax
(zher2 uplo n alpha x incx y incy a lda)
5.2.1.55.2 Description

5.2.1.56 Function: zher2k
5.2.1.56.1 Syntax
(zher2k uplo trans n k alpha a lda b ldb$ beta c ldc)
5.2.1.56.2 Description

5.2.1.57 Function: zherk
5.2.1.57.1 Syntax
(zherk uplo trans n k alpha a lda beta c ldc)
5.2.1.57.2 Description

5.2.1.58 Function: zhpmv
5.2.1.58.1 Syntax
(zhpmv uplo n alpha ap x incx beta y incy)
5.2.1.58.2 Description

5.2.1.59 Function: zhpr
5.2.1.59.1 Syntax
(zhpr uplo n alpha x incx ap)
5.2.1.59.2 Description

5.2.1.60 Function: zhpr2
5.2.1.60.1 Syntax
(zhpr2 uplo n alpha x incx y incy ap)
5.2.1.60.2 Description

5.2.1.61 Function: zrotg
5.2.1.61.1 Syntax
(zrotg ca cb c s)
5.2.1.61.2 Description

5.2.1.62 Function: zscal
5.2.1.62.1 Syntax
(zscal n za zx incx)
5.2.1.62.2 Description

5.2.1.63 Function: zswap
5.2.1.63.1 Syntax
(zswap n zx incx zy incy)
5.2.1.63.2 Description

5.2.1.64 Function: zsymm
5.2.1.64.1 Syntax
(zsymm side uplo m n alpha a lda b ldb$ beta c ldc)
5.2.1.64.2 Description

5.2.1.65 Function: zsyr2k
5.2.1.65.1 Syntax
(zsyr2k uplo trans n k alpha a lda b ldb$ beta c ldc)
5.2.1.65.2 Description

5.2.1.66 Function: zsyrk
5.2.1.66.1 Syntax
(zsyrk uplo trans n k alpha a lda beta c ldc)
5.2.1.66.2 Description

5.2.1.67 Function: ztbmv
5.2.1.67.1 Syntax
(ztbmv uplo trans diag n k a lda x incx)
5.2.1.67.2 Description

5.2.1.68 Function: ztbsv
5.2.1.68.1 Syntax
(ztbsv uplo trans diag n k a lda x incx)
5.2.1.68.2 Description

5.2.1.69 Function: ztpmv
5.2.1.69.1 Syntax
(ztpmv uplo trans diag n ap x incx)
5.2.1.69.2 Description

5.2.1.70 Function: ztpsv
5.2.1.70.1 Syntax
(ztpsv uplo trans diag n ap x incx)
5.2.1.70.2 Description

5.2.1.71 Function: ztrmm
5.2.1.71.1 Syntax
(ztrmm side uplo transa diag m n alpha a lda b ldb$)
5.2.1.71.2 Description

5.2.1.72 Function: ztrmv
5.2.1.72.1 Syntax
(ztrmv uplo trans diag n a lda x incx)
5.2.1.72.2 Description

5.2.1.73 Function: ztrsm
5.2.1.73.1 Syntax
(ztrsm side uplo transa diag m n alpha a lda b ldb$)
5.2.1.73.2 Description

5.2.1.74 Function: ztrsv
5.2.1.74.1 Syntax
(ztrsv uplo trans diag n a lda x incx)
5.2.1.74.2 Description

6 Package: blas-complex-system

  • Uses: common-lisp, asdf/interface
  • Used by: None.

6.1 Description

6.2 External Symbols

7 Package: blas-hompack-system

  • Uses: common-lisp, asdf/interface
  • Used by: None.

7.1 Description

7.2 External Symbols

8 Package: blas-real-system

  • Uses: common-lisp, asdf/interface
  • Used by: None.

8.1 Description

8.2 External Symbols

9 Package: clml.association-rule

  • Uses: common-lisp, hjs.util.vector, hjs.learn.read-data
  • Used by: clml.test

9.1 Description

Package for association rule analysis

9.1.0.1 sample usage
ASSOC(25): (association-analyze "https://mmaul.github.io/clml.data/sample/pos.sexp" "sample/result.sexp"
                               '("商品名") "ID番号" 3 :support 2 :external-format #+allegro :932 #-allegro :sjis)
#<ASSOC-RESULT-DATASET>
THRESHOLDS: SUPPORT 2 | CONFIDENCE 0 | LIFT 0 | CONVICTION 0
RULE-LENGTH: 3
RESULT: 4532 RULES

ASSOC(6): (setf dataset (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/pos.sexp") :external-format #+allegro :932 #-allegro :sjis))
#<HJS.LEARN.READ-DATA::UNSPECIALIZED-DATASET>
DIMENSIONS: ID番号 | 商品名 | 数量 | 金額
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
DATA POINTS: 19929 POINTS

ASSOC(11): (%association-analyze-apriori dataset '("商品名") "ID番号" 3 :support 2)
#<ASSOC-RESULT-DATASET>
THRESHOLDS: SUPPORT 2 | CONFIDENCE 0 | LIFT 0 | CONVICTION 0
RULE-LENGTH: 3
RESULT: 4532 RULES

9.2 External Symbols

9.2.1 External Functions


9.2.1.1 Inherited Function: %association-analyze
9.2.1.1.1 Syntax
(%association-analyze unsp-dataset target-variables key-variable rule-length
                      &key (support 0) (confident 0) (lift 0) (conviction 0))
9.2.1.1.2 Description
  • return: assoc-result-dataset
  • arguments:
    • infile : <string>
    • outfile : <string>
    • target-variables : <list string> column names
    • key-variable : <string> column name for determining identities
    • rule-length : <integer> >= 2, maximum length for a rule
    • support : <number> for percentage
    • confident : <number> for percentage
    • lift : <number> beyond 0
    • conviction : <number> beyond 0
    • file-type : :sexp | :csv
    • external-format : <acl-external-format>
    • csv-type-spec : <list symbol>, type conversion of each column when reading lines from CSV file, e.g. '(string integer double-float double-float)
    • algorithm : :apriori | :da | :fp-growth | :eclat | :lcm

9.2.1.2 Inherited Function: %association-analyze-ap-genrule
9.2.1.2.1 Syntax
(%association-analyze-ap-genrule unsp-dataset target-variables key-variable
                                 rule-length &key (support 0) (confident 0)
                                 (lift 0) (conviction 0))
9.2.1.2.2 Description

9.2.1.3 Inherited Function: %association-analyze-apriori
9.2.1.3.1 Syntax
(%association-analyze-apriori unsp-dataset target-variables key-variable
                              rule-length &key (support 0) (confident 0)
                              (lift 0) (conviction 0))
9.2.1.3.2 Description

ssociation analyze with apriori algorithm.

  • return: assoc-result-dataset
  • arguments:
    • unsp-dataset: <unspecialized-dataset>
    • target-variables : (list of string) column names
    • key-variable : <string> column name for determining identities
    • rule-length : <integer> >= 2, maximum length for a rule
    • support : <number> for percentage
    • confident : <number> for percentage
    • lift : <number> beyond 0
    • conviction : <number> beyond 0

9.2.1.4 Inherited Function: %association-analyze-da
9.2.1.4.1 Syntax
(%association-analyze-da labeled-dataset target-variables key-variable
                         rule-length &key (support 0) (confident 0) (lift 0)
                         (conviction 0))
9.2.1.4.2 Description

9.2.1.5 Inherited Function: %association-analyze-da-ap-genrule
9.2.1.5.1 Syntax
(%association-analyze-da-ap-genrule labeled-dataset target-variables
                                    key-variable rule-length &key (support 0)
                                    (confident 0) (lift 0) (conviction 0))
9.2.1.5.2 Description

Association analyze with da-ap-genrule algorithm. This is developer's idea using double-array for calculation.

  • return value and arguments are same as %association-analyze-apriori

9.2.1.6 Inherited Function: %association-analyze-eclat
9.2.1.6.1 Syntax
(%association-analyze-eclat labeled-dataset target-variables key-variable
                            rule-length &key (support 0) (confident 0) (lift 0)
                            (conviction 0))
9.2.1.6.2 Description

Association analyze with Eclat algorithm

  • return value and arguments are same as %association-analyze-apriori

9.2.1.7 Inherited Function: %association-analyze-fp-growth
9.2.1.7.1 Syntax
(%association-analyze-fp-growth labeled-dataset target-variables key-variable
                                rule-length &key (support 0) (confident 0)
                                (lift 0) (conviction 0))
9.2.1.7.2 Description

Association analyze with frequent pattern growth algorithm

  • return value and arguments are same as %association-analyze-apriori

9.2.1.8 Inherited Function: %association-analyze-lcm
9.2.1.8.1 Syntax
(%association-analyze-lcm labeled-dataset target-variables key-variable
                          rule-length &key (support 0) (confident 0) (lift 0)
                          (conviction 0))
9.2.1.8.2 Description

Association analyze with Linear time Closed itemset Miner(LCM) algorithm

  • return value and arguments are same as %association-analyze-apriori

9.2.1.9 Inherited Function: assoc-result-header
9.2.1.9.1 Syntax
(assoc-result-header object)
9.2.1.9.2 Description

9.2.1.10 Inherited Function: assoc-result-rules
9.2.1.10.1 Syntax
(assoc-result-rules object)
9.2.1.10.2 Description

9.2.1.11 Inherited Function: association-analyze
9.2.1.11.1 Syntax
(association-analyze infile outfile target-variables key-variable rule-length
                     &key (support 0) (confident 0) (lift 0) (conviction 0)
                     (external-format default) (file-type sexp)
                     (csv-type-spec '(string double-float)) (algorithm lcm))
9.2.1.11.2 Description

9.2.1.12 Inherited Function: scan-eclat
9.2.1.12.1 Syntax
(scan-eclat trie transactions length rest-keys minimum-count)
9.2.1.12.2 Description

9.2.1.13 Inherited Function: scan-input-data-eclat
9.2.1.13.1 Syntax
(scan-input-data-eclat labeled-dataset target-variables key-variable
                       rule-length support)
9.2.1.13.2 Description

10 Package: clml.classifiers.linear-regression

  • Uses: common-lisp, hjs.learn.read-data, hjs.util.matrix, hjs.util.meta
  • Used by: clml.test

10.1 Description

linear regression package

10.1.0.1 sample usage
LINEAR-REGRESSION(128):(setf dataset (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/airquality.csv")
			       :type :csv
			       :csv-type-spec 
			       '(integer double-float double-float double-float double-float integer integer)))
 #<UNSPECIALIZED-DATASET>
 DIMENSIONS: id | Ozone | Solar | Wind | Temp | Month | Day
 TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
 DATA POINTS: 111 POINTS
LINEAR-REGRESSION(129):(setf airquality (pick-and-specialize-data dataset :range '(0 1 2 3 4) 
				    :data-types '(:numeric :numeric :numeric :numeric :numeric)))
 #<NUMERIC-DATASET>
 DIMENSIONS: id | Ozone | Solar | Wind | Temp
 TYPES:      NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC
 NUMERIC DATA POINTS: 111 POINTS
LINEAR-REGRESSION(130):(mlr airquality '(2 3 4 1))
 #(-64.34207892859138 0.05982058996849854 -3.333591305512754 1.6520929109927098)

10.2 External Symbols

10.2.1 External Functions


10.2.1.1 Inherited Function: adjusted-r^2
10.2.1.1.1 Syntax
(adjusted-r^2 numeric-dataset range)
10.2.1.1.2 Description

10.2.1.2 Inherited Function: d.f
10.2.1.2.1 Syntax
(d.f numeric-dataset range)
10.2.1.2.2 Description

10.2.1.3 Inherited Function: f-value
10.2.1.3.1 Syntax
(f-value numeric-dataset range)
10.2.1.3.2 Description

10.2.1.4 Inherited Function: mlr
10.2.1.4.1 Syntax
(mlr numeric-dataset range)
10.2.1.4.2 Description
  • return: <SIMPLE-ARRAY DOUBLE-FLOAT (*)>, intercept and coefficients of multiple regression formula
  • arguments:
    • numeric-dataset : <NUMERIC-DATASET>
    • range : <list>, '(indices of explanatory variables, index of objective variable)

10.2.1.5 Inherited Function: pf
10.2.1.5.1 Syntax
(pf f phi-1 phi-2)
10.2.1.5.2 Description

10.2.1.6 Inherited Function: pf-value
10.2.1.6.1 Syntax
(pf-value numeric-dataset range)
10.2.1.6.2 Description

10.2.1.7 Inherited Function: pt
10.2.1.7.1 Syntax
(pt t-value phi)
10.2.1.7.2 Description

10.2.1.8 Inherited Function: pt-value-vector
10.2.1.8.1 Syntax
(pt-value-vector numeric-dataset range)
10.2.1.8.2 Description

10.2.1.9 Inherited Function: residual-quantile-vector
10.2.1.9.1 Syntax
(residual-quantile-vector numeric-dataset range)
10.2.1.9.2 Description

10.2.1.10 Inherited Function: residual-std-err
10.2.1.10.1 Syntax
(residual-std-err numeric-dataset range)
10.2.1.10.2 Description

10.2.1.11 Inherited Function: residual-vector
10.2.1.11.1 Syntax
(residual-vector numeric-dataset range)
10.2.1.11.2 Description

10.2.1.12 Inherited Function: r^2
10.2.1.12.1 Syntax
(r^2 numeric-dataset range)
10.2.1.12.2 Description

10.2.1.13 Inherited Function: std-err-vector
10.2.1.13.1 Syntax
(std-err-vector numeric-dataset range)
10.2.1.13.2 Description

10.2.1.14 Inherited Function: t-value-vector
10.2.1.14.1 Syntax
(t-value-vector numeric-dataset range)
10.2.1.14.2 Description

11 Package: clml.classifiers.logistic-regression

  • Uses: common-lisp, clml.svm.wss3, hjs.learn.read-data, hjs.util.vector, hjs.util.matrix
  • Used by: None.

11.1 Description

11.2 External Symbols

12 Package: clml.classifiers.nbayes

  • Uses: common-lisp, hjs.learn.read-data
  • Used by: clml.test

12.1 Description

Naive-Bayes

Naive-Bayes package (Multivariate Bernoulli and Multinomial Naive Bayes)

12.1.0.1 sample usage

12.2 External Symbols

12.2.1 External Functions


12.2.1.1 Inherited Function: make-mbnb-learner
12.2.1.1.1 Syntax
(make-mbnb-learner p-wc classes)
12.2.1.1.2 Description

12.2.1.2 Inherited Function: make-mnb-learner
12.2.1.2.1 Syntax
(make-mnb-learner q-wc classes)
12.2.1.2.2 Description

12.2.1.3 Inherited Function: mbnb-learn
12.2.1.3.1 Syntax
(mbnb-learn training-vector &key (alpha 1.0))
12.2.1.3.2 Description
  • return List:(p-wc classes):array of conditional probabilities and class labels
  • arguments
    • training-vector:bag of words matrix (rows = documents, columns = words) whose class label locates the final column
    • alpha :smoothing parameter, its default value is 1.0

Multivariate Bernoulli Naive Bayes Argument alpha is a smoothing parameter. We assume that final colum is the class label.


12.2.1.4 Inherited Function: mnb-learn
12.2.1.4.1 Syntax
(mnb-learn training-vector &key (alpha 1.0))
12.2.1.4.2 Description

13 Package: clml.clustering.cluster-validation

  • Uses: common-lisp, hjs.learn.k means, hjs.util.vector, hjs.util.meta, iterate
  • Used by: clml.test

13.1 Description

13.1.0.1 sample usage
CLUSTER-VALIDATION(72): (setf *workspace*
                         (k-means:k-means
                          5
                          (read-data:pick-and-specialize-data
                           (read-data:read-data-from-file
                            "https://mmaul.github.io/clml.data/sample/syobu.csv" :type :csv
                            :csv-type-spec '(string integer integer integer integer)
                            :external-format #+allegro :932 #-allegro :sjis)
                           :except '(0) :data-types (make-list 4
                                                               :initial-element :numeric))))
CLUSTER-VALIDATION(73): (calinski)
441.8562453167574
CLUSTER-VALIDATION(74): (hartigan)
2.5074656538807023
CLUSTER-VALIDATION(75): (ball-and-hall)
1127.7702976190476
CLUSTER-VALIDATION(76): (dunn-index :distance :euclid
                                    :intercluster :hausdorff
                                    :intracluster :centroid)
1.2576613811360222
CLUSTER-VALIDATION(77): (davies-bouldin-index :distance :euclid
                                              :intercluster :average
                                              :intracluster :complete)
1.899415427296523
CLUSTER-VALIDATION(78): (global-silhouette-value :distance :euclid)
0.5786560352400679

13.2 External Symbols

13.2.1 External Global Variables


13.2.1.1 Inherited Variable: *workspace*
13.2.1.1.1 Value
NIL

Type: null

13.2.1.1.2 Description

workspace | validation target, the result of k-means clustering

13.2.2 External Functions


13.2.2.1 Inherited Function: ball-and-hall
13.2.2.1.1 Syntax
(ball-and-hall &optional (*workspace* *workspace*))
13.2.2.1.2 Description

13.2.2.2 Inherited Function: calinski
13.2.2.2.1 Syntax
(calinski &optional (*workspace* *workspace*))
13.2.2.2.2 Description
  • return: <number> cluster validity index

13.2.2.3 Inherited Function: centroid
13.2.2.3.1 Syntax
(centroid)
13.2.2.3.2 Description

13.2.2.4 Inherited Function: davies-bouldin-index
13.2.2.4.1 Syntax
(davies-bouldin-index &key (*workspace* *workspace*) (distance euclid)
                      (intercluster centroid) (intracluster centroid))
13.2.2.4.2 Description

13.2.2.5 Inherited Function: default-init-workspace
13.2.2.5.1 Syntax
(default-init-workspace)
13.2.2.5.2 Description

13.2.2.6 Inherited Function: dunn-index
13.2.2.6.1 Syntax
(dunn-index &key (*workspace* *workspace*) (distance euclid)
            (intercluster centroid) (intracluster centroid))
13.2.2.6.2 Description

13.2.2.7 Inherited Function: global-silhouette-value
13.2.2.7.1 Syntax
(global-silhouette-value &key (*workspace* *workspace*) (distance euclid))
13.2.2.7.2 Description

13.2.2.8 Inherited Function: hartigan
13.2.2.8.1 Syntax
(hartigan &optional (*workspace* *workspace*))
13.2.2.8.2 Description

14 Package: clml.clustering.hc

  • Uses: common-lisp, hjs.learn.read-data, hjs.util.vector, hjs.util.matrix, hjs.util.meta
  • Used by: clml.test, clml.clustering.nmf

14.1 Description

hierarchical-clustering package

14.1.0.1 sample usage
HC(35): (setf data (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/seiseki.csv")
					:type :csv :csv-type-spec
					'(string double-float double-float double-float double-float double-float)))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: name | math | science | japanese | english | history
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
DATA POINTS: 7 POINTS
HC(36): (setf seiseki (pick-and-specialize-data data :range '(1 2 3 4 5)
						:data-types '(:numeric :numeric :numeric :numeric :numeric)))
 #<NUMERIC-DATASET>
DIMENSIONS: math | science | japanese | english | history
TYPES:      NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC
NUMERIC DATA POINTS: 7 POINTS
HC(37): (setf distance-matrix (distance-matrix (numeric-matrix seiseki)))
 #2A((0.0 68.65857557508748 33.77869150810907 60.13318551349163 28.478061731796284 63.37191807101944 67.88225099390856)
    (68.65857557508748 0.0 81.11103500757464 64.1404708432983 60.753600716336145 12.409673645990857 38.1051177665153)
    (33.77869150810907 81.11103500757464 0.0 52.67826876426369 21.307275752662516 75.66372975210778 87.53856293085921)
    (60.13318551349163 64.1404708432983 52.67826876426369 0.0 47.10626285325551 54.31390245600108 91.53141537199127)
    (28.478061731796284 60.753600716336145 21.307275752662516 47.10626285325551 0.0 56.382621436041795 67.72739475278819)
    (63.37191807101944 12.409673645990857 75.66372975210778 54.31390245600108 56.382621436041795 0.0 45.58508528016593)
    (67.88225099390856 38.1051177665153 87.53856293085921 91.53141537199127 67.72739475278819 45.58508528016593 0.0))
HC(38): (multiple-value-setq (u v) (cophenetic-matrix distance-matrix #'hc-ward))
 #2A((0.0 150.95171411164776 34.40207690904939 66.03152040007744 34.40207690904939 150.95171411164776 150.95171411164776)
    (150.95171411164776 0.0 150.95171411164776 150.95171411164776 150.95171411164776 12.409673645990857 51.65691081579053)
    (34.40207690904939 150.95171411164776 0.0 66.03152040007744 21.307275752662516 150.95171411164776 150.95171411164776)
    (66.03152040007744 150.95171411164776 66.03152040007744 0.0 66.03152040007744 150.95171411164776 150.95171411164776)
    (34.40207690904939 150.95171411164776 21.307275752662516 66.03152040007744 0.0 150.95171411164776 150.95171411164776)
    (150.95171411164776 12.409673645990857 150.95171411164776 150.95171411164776 150.95171411164776 0.0 51.65691081579053)
    (150.95171411164776 51.65691081579053 150.95171411164776 150.95171411164776 150.95171411164776 51.65691081579053 0.0))
HC(39): (cutree 3 v)
 #(1 2 1 3 1 2 2)

14.2 External Symbols

14.2.1 External Functions


14.2.1.1 Inherited Function: cophenetic-cc
14.2.1.1.1 Syntax
(cophenetic-cc distance-matrix cophenetic-matrix)
14.2.1.1.2 Description

14.2.1.2 Inherited Function: cophenetic-matrix
14.2.1.2.1 Syntax
(cophenetic-matrix distance-matrix &optional (method #'hc-average))
14.2.1.2.2 Description
  • return: (SIMPLE-ARRAY DOUBLE-FLOAT (* * )), (SIMPLE-ARRAY T (* *)), cophenetic matrix and merge matrix
  • arguments:
    • distance-matrix : (SIMPLE-ARRAY DOUBLE-FLOAT (* *))
    • method : hc-single | hc-complete | hc-average | hc-centroid | hc-median | hc-ward, default is average

14.2.1.3 Inherited Function: cutree
14.2.1.3.1 Syntax
(cutree k merge-matrix)
14.2.1.3.2 Description
  • return: (SIMPLE-ARRAY T), cluster label vector
  • arguments:
    • k : the number of clusters, to divide dendrogram into k pieces
    • merge-matrix

14.2.1.4 Inherited Function: distance-matrix
14.2.1.4.1 Syntax
(distance-matrix matrix &optional (distance-fn #'euclidean))
14.2.1.4.2 Description

14.2.1.5 Inherited Function: hc-average
14.2.1.5.1 Syntax
(hc-average distance-matrix merge-matrix i j)
14.2.1.5.2 Description

14.2.1.6 Inherited Function: hc-centroid
14.2.1.6.1 Syntax
(hc-centroid distance-matrix merge-matrix i j)
14.2.1.6.2 Description

14.2.1.7 Inherited Function: hc-complete
14.2.1.7.1 Syntax
(hc-complete distance-matrix merge-matrix i j)
14.2.1.7.2 Description

14.2.1.8 Inherited Function: hc-median
14.2.1.8.1 Syntax
(hc-median distance-matrix merge-matrix i j)
14.2.1.8.2 Description

14.2.1.9 Inherited Function: hc-single
14.2.1.9.1 Syntax
(hc-single distance-matrix merge-matrix i j)
14.2.1.9.2 Description

14.2.1.10 Inherited Function: hc-ward
14.2.1.10.1 Syntax
(hc-ward distance-matrix merge-matrix i j)
14.2.1.10.2 Description

14.2.1.11 Inherited Function: i-thvector
14.2.1.11.1 Syntax
(i-thvector)
14.2.1.11.2 Description

14.2.1.12 Inherited Function: max-vector
14.2.1.12.1 Syntax
(max-vector)
14.2.1.12.2 Description

14.2.1.13 Inherited Function: min-vector
14.2.1.13.1 Syntax
(min-vector)
14.2.1.13.2 Description

14.2.1.14 Inherited Function: numeric-matrix
14.2.1.14.1 Syntax
(numeric-matrix numeric-dataset)
14.2.1.14.2 Description

14.2.1.15 Inherited Function: pick-up-column
14.2.1.15.1 Syntax
(pick-up-column)
14.2.1.15.2 Description

14.2.1.16 Inherited Function: pick-up-row
14.2.1.16.1 Syntax
(pick-up-row)
14.2.1.16.2 Description

14.2.1.17 Inherited Function: product-sum
14.2.1.17.1 Syntax
(product-sum v1 v2)
14.2.1.17.2 Description

14.2.1.18 Inherited Function: square-sum
14.2.1.18.1 Syntax
(square-sum v)
14.2.1.18.2 Description

14.2.1.19 Inherited Function: vector-mean
14.2.1.19.1 Syntax
(vector-mean vector)
14.2.1.19.2 Description

14.2.1.20 Inherited Function: vector-shift
14.2.1.20.1 Syntax
(vector-shift v const)
14.2.1.20.2 Description

14.2.1.21 Inherited Function: vector-sum
14.2.1.21.1 Syntax
(vector-sum)
14.2.1.21.2 Description

15 Package: clml.clustering.k-means2

  • Uses: common-lisp, hjs.util.vector, hjs.util.meta, clml.statistics, hjs.util.matrix
  • Used by: None.

15.1 Description

15.2 External Symbols

15.2.1 External Functions


15.2.1.1 Inherited Function: k-means
15.2.1.1.1 Syntax
(k-means)
15.2.1.1.2 Description

15.3 Ambiguous Symbols

15.3.1 K-Means

Disambiguation.

  • Function: clml.clustering.k-means2:k-means
  • Package: clml.clustering.k-means2:k-means

16 Package: clml.clustering.nmf

  • Uses: common-lisp, clml.clustering.hc, blas, lapack, hjs.learn.read-data, hjs.util.matrix, hjs.util.meta
  • Used by: clml.test

16.1 Description

16.2 External Symbols

16.2.1 External Functions


16.2.1.1 Inherited Function: c^3m-cluster-number
16.2.1.1.1 Syntax
(c^3m-cluster-number corpus-dataset)
16.2.1.1.2 Description
16.2.1.1.2.0.1 sample usage
NMF(48): (setf corpus-dataset (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/sports-corpus-data") :external-format :utf-8))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: File | 清水 | 試合 | ヤクルト | 鹿島 | 久保田 | ブルペン | 阿部 | 海老原 | 北海道 ...
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN ...
NUMBER OF DIMENSIONS: 1203
DATA POINTS: 100 POINTS
NMF(49): (c^3m-cluster-number corpus-dataset)
20.974904271175472
NMF(50): (setf corpus-dataset (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/politics-corpus-data") :external-format :utf-8))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: File | 隠岐 | 定期 | 立場 | 比例 | 入札 | 成長 | 農水 | 秋田 | 教材 ...
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN ...
NUMBER OF DIMENSIONS: 850
DATA POINTS: 80 POINTS
NMF(51): (c^3m-cluster-number corpus-dataset)
15.290476048493785

16.2.1.2 Inherited Function: nmf
16.2.1.2.1 Syntax
(nmf matrix k &key (cost-fn euclidean) (iteration 100))
16.2.1.2.2 Description
  • return: (SIMPLE-ARRAY DOUBLE-FLOAT (* *)), two factor matrices obtained by nmf
  • arguments:
  • non-negative matrix factorization with sparseness constraints
  • return: (SIMPLE-ARRAY DOUBLE-FLOAT (* * )), two factor matrices obtained by nmf
  • arguments:
    • non-negative-matrix : (SIMPLE-ARRAY DOUBLE-FLOAT (* * ))
    • k : size of dimension reduction
    • sparseness 0.0~1.0
    • type : :left | :right
    • iteration : default is 100
  • comments : we do nmf with sparseness constrained for the left factor matrix each column vector or right factor matrix each row vector. Objective function is euclidean norm.
  • reference: Non-negative Matrix Factorization with Sparseness Constraints - non-negative-matrix : (SIMPLE-ARRAY DOUBLE-FLOAT (* *))
    • k : size of dimension reduction or number of features
    • cost-fn : :euclidean | :kl , default is euclidean
    • iteration : default is 100
  • comments : we can choose Kullback–Leibler divergence as a cost function
  • reference : NMF package on CL-Machine Learning
16.2.1.2.2.0.1 sample usage
NMF(136): (setf x (sample-matrix 7 10))
 #2A((90.0 89.0 21.0 40.0 30.0 21.0 44.0 24.0 1.0 51.0)
    (1.0 64.0 5.0 90.0 66.0 69.0 89.0 29.0 95.0 80.0)
    (52.0 11.0 87.0 30.0 26.0 56.0 27.0 74.0 16.0 3.0)
    (90.0 10.0 92.0 16.0 54.0 75.0 48.0 22.0 73.0 71.0)
    (66.0 20.0 88.0 89.0 6.0 10.0 62.0 99.0 79.0 45.0)
    (3.0 71.0 31.0 74.0 99.0 76.0 93.0 19.0 31.0 61.0)
    (52.0 40.0 11.0 47.0 90.0 11.0 80.0 88.0 45.0 30.0))
NMF(137): (nmf-clustering x 5)
 #(4 1 3 3 2 1 4)
NMF(138): (nmf-clustering x 5 :type :column)
 #(2 0 2 0 0 0 0 1 0 0)

16.2.1.3 Inherited Function: nmf-analysis
16.2.1.3.1 Syntax
(nmf-analysis matrix k &key (cost-fn euclidean) (iteration 100) (type row)
              (results 10))
16.2.1.3.2 Description
  • print the results of NMF feature extraction
  • return: nil
  • arguments:
    • non-negative-matrix
    • k : number of features
    • cost-fn : :euclidean | :kl, default is euclidean
    • iteration : default is 100
    • type : :row | :column, default is feature extraction from row data
    • results : print the number of data in descending order, default is 10
16.2.1.3.2.0.1 sample usage
NMF(25): (setf x (sample-matrix 100 200))
 #2A((92.0 5.0 77.0 47.0 91.0 25.0 93.0 63.0 48.0 30.0 ...)
    (10.0 2.0 48.0 73.0 90.0 35.0 4.0 19.0 78.0 29.0 ...)
    (38.0 7.0 44.0 61.0 98.0 92.0 11.0 31.0 97.0 80.0 ...)
    (12.0 45.0 53.0 69.0 92.0 95.0 50.0 57.0 57.0 52.0 ...)
    (89.0 33.0 45.0 54.0 43.0 62.0 4.0 92.0 19.0 93.0 ...)
    (38.0 84.0 75.0 71.0 16.0 74.0 34.0 41.0 59.0 83.0 ...)
    (7.0 59.0 45.0 95.0 47.0 55.0 21.0 82.0 55.0 74.0 ...)
    (57.0 41.0 43.0 65.0 56.0 51.0 26.0 26.0 84.0 21.0 ...)
    (44.0 68.0 22.0 83.0 75.0 63.0 98.0 74.0 18.0 79.0 ...)
    (78.0 21.0 71.0 8.0 53.0 88.0 35.0 23.0 20.0 18.0 ...)
    ...)
NMF(26): (nmf-analysis x 3 :type :column :results 5)

Feature 0
81   46.75849601655378
103   45.955361786327046
140   43.68666852948713
64   43.51457629469007
152   42.932921747549514

Feature 1
186   11.79404092624892
138   11.19240951742515
42   10.716884646306237
150   9.93408007033108
98   9.827683668745964

Feature 2
145   8.53136727031378
128   7.427871404203731
131   7.399743366645699
162   7.207875670792123
98   7.097879611292094
NIL

16.2.1.4 Inherited Function: nmf-clustering
16.2.1.4.1 Syntax
(nmf-clustering matrix k &key (type row) (cost-fn euclidean) (iteration 100))
16.2.1.4.2 Description
  • clustering using nmf, each row or column datum is placed into cluster corresponding to highest feature
  • return: (SIMPLE-ARRAY T (*)), cluster label vector
  • arguments :
    • non-negative-matrix : (SIMPLE-ARRAY DOUBLE-FLOAT (* *))
    • k : number of features
    • type : :row | :column, default is row data clustering
    • cost-fn : :euclidean | :kl, default is euclidean
    • iteration : default is 100
  • comments : obtained each cluster size is not always constant (not like k-means)
16.2.1.4.2.0.1 sample usage
NMF(136): (setf x (sample-matrix 7 10))
 #2A((90.0 89.0 21.0 40.0 30.0 21.0 44.0 24.0 1.0 51.0)
    (1.0 64.0 5.0 90.0 66.0 69.0 89.0 29.0 95.0 80.0)
    (52.0 11.0 87.0 30.0 26.0 56.0 27.0 74.0 16.0 3.0)
    (90.0 10.0 92.0 16.0 54.0 75.0 48.0 22.0 73.0 71.0)
    (66.0 20.0 88.0 89.0 6.0 10.0 62.0 99.0 79.0 45.0)
    (3.0 71.0 31.0 74.0 99.0 76.0 93.0 19.0 31.0 61.0)
    (52.0 40.0 11.0 47.0 90.0 11.0 80.0 88.0 45.0 30.0))
NMF(137): (nmf-clustering x 5)
 #(4 1 3 3 2 1 4)
NMF(138): (nmf-clustering x 5 :type :column)
 #(2 0 2 0 0 0 0 1 0 0)

16.2.1.5 Inherited Function: nmf-corpus-analysis
16.2.1.5.1 Syntax
(nmf-corpus-analysis corpus-dataset k &key (cost-fn euclidean) (iteration 100)
                     (results 10))
16.2.1.5.2 Description
  • print the results of NMF feature extraction from given corpus
  • return: nil
  • arguments:
    • corpus-dataset (BOW)
    • k : number of features
    • cost-fn : :euclidean | :kl, default is euclidean
    • iteration : default is 100
    • results : print the number of terms or documents in descending order, default is 10
  • comments : the form of corpus data is 0th row is term-name vector and 0th column is document-name vector.
16.2.1.5.2.0.1 sample usage
NMF(43): (setf corpus-dataset (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/sports-corpus-data") :external-format :utf-8))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: File | 清水 | 試合 | ヤクルト | 鹿島 | 久保田 | ブルペン | 阿部 | 海老原 | 北海道 ...
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN ...
NUMBER OF DIMENSIONS: 1203
DATA POINTS: 100 POINTS
NMF(44): (nmf-corpus-analysis corpus-dataset 4 :results 5)

Feature 0
マラソン     0.06539791632876352
大阪     0.04396451716840554
世界     0.040060656488777956
練習     0.03013540009606857
日本     0.0263706887677491

Feature 1
キャンプ     0.050381707199561754
宮崎     0.04586256603311258
監督     0.04578344596673979
投手     0.03456446647191445
野村     0.031224839643966038

Feature 2
決勝     0.06583621496282896
成年     0.06518764560939831
少年     0.05997504015149991
アイスホッケー     0.05464756076159945
群馬     0.04984371126734561

Feature 3
クラブ     0.03079770863250652
女子     0.024996064747937526
青森     0.023674619657332124
男子     0.023620256997055035
決勝     0.021651435489732713

Feature 0
00267800     4.054754528219457
00267780     3.7131593889464547
00261590     3.682858805780204
00267810     3.45020951637797
00267690     2.3814860805418316

Feature 1
00260660     3.161958458984025
00264500     2.9168932935791005
00261710     2.6708462825315076
00260650     2.467416770070239
00261770     2.4606524064689745

Feature 2
00264720     3.777138076271187
00265130     3.7275902361529445
00264810     3.5318672409737575
00265920     3.067206984954445
00265250     3.0173922648749887

Feature 3
00266020     3.4719778705422577
00266350     3.1108497329849696
00265970     3.066726776112281
00266070     2.609255058301139
00266120     2.4909903804005693
NIL

16.2.1.6 Inherited Function: nmf-corpus-search
16.2.1.6.1 Syntax
(nmf-corpus-search corpus-dataset term-or-document-name &key type
                   (iteration 100) (results 10))
16.2.1.6.2 Description
  • find the related or similar terms or documents by using nmf
  • return: nil
  • arguments:
    • corpus-dataset (BOW)
    • term-or-document-name
    • type : :term | :document, query type
    • iteration : default is 100
    • results : print the number of terms or documents in descending order, default is 10
  • comments : we search the related and/or similar terms or documents by using nmf(k=1).
16.2.1.6.2.0.1 sample usage
NMF(52): (setf corpus-dataset (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/sports-corpus-data") :external-format :utf-8))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: File | 清水 | 試合 | ヤクルト | 鹿島 | 久保田 | ブルペン | 阿部 | 海老原 | 北海道 ...
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN ...
NUMBER OF DIMENSIONS: 1203
DATA POINTS: 100 POINTS
NMF(53): (nmf-corpus-search corpus-dataset "西武" :type :term :results 5)

Feature 0
西武     0.5251769235046575
所沢     0.03181077447066429
埼玉     0.031469276621575296
期待     0.029643503937470485
松坂     0.02532560897068374

Feature 0
00261790     8.972318348154714
00266250     4.238044604712796
00261710     1.289125490767428
00261730     0.08947696606550368
00265240     0.06077982768909628
NIL
NMF(54): (nmf-corpus-search corpus-dataset "00267800" :type :document :results 5)

Feature 0
大阪     0.20525379542444078
マラソン     0.17626791348443296
距離     0.10999092287756253
練習     0.09982535243005934
経験     0.08390979988118884

Feature 0
00267800     7.970296782572513
00267780     1.1463577558558922
00267810     0.9796321883720066
00261590     0.9016390011411483
00267690     0.6534929166105935
NIL
NMF(55): (setf corpus-dataset (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/politics-corpus-data") :external-format :utf-8))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: File | 隠岐 | 定期 | 立場 | 比例 | 入札 | 成長 | 農水 | 秋田 | 教材 ...
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN ...
NUMBER OF DIMENSIONS: 850
DATA POINTS: 80 POINTS
NMF(56): (nmf-corpus-search corpus-dataset "クリントン" :type :term :results 5)

Feature 0
クリントン     0.5131911387489791
大統領     0.12539909855726378
アイオワ     0.03805693041474284
米     0.03336496912093245
ヒラリー     0.03046886725695364

Feature 0
00240260     6.164303014225728
00240860     4.927092104170816
00266600     0.4368921996276413
00240820     0.04974743623243792
00251070     0.029176304053375055
NIL

16.2.1.7 Inherited Function: nmf-sc
16.2.1.7.1 Syntax
(nmf-sc v k sparseness &key type (iteration 100))
16.2.1.7.2 Description
  • non-negative matrix factorization with sparseness constraints
  • return: (SIMPLE-ARRAY DOUBLE-FLOAT (* * )), two factor matrices obtained by nmf
  • arguments:
    • non-negative-matrix : (SIMPLE-ARRAY DOUBLE-FLOAT (* * ))
    • k : size of dimension reduction
    • sparseness 0.0~1.0
    • type : :left | :right
    • iteration : default is 100
  • comments : we do nmf with sparseness constrained for the left factor matrix each column vector or right factor matrix each row vector. Objective function is euclidean norm.
  • reference: Non-negative Matrix Factorization with Sparseness Constraints
16.2.1.7.2.0.1 sample usage
NMF(34): (setf x (sample-matrix 100 100))
 #2A((70.0 65.0 68.0 42.0 35.0 20.0 51.0 7.0 25.0 9.0 ...)
    (44.0 83.0 39.0 37.0 32.0 74.0 32.0 23.0 27.0 42.0 ...)
    (57.0 97.0 96.0 23.0 56.0 67.0 27.0 19.0 90.0 89.0 ...)
    (55.0 6.0 32.0 78.0 59.0 58.0 34.0 63.0 66.0 7.0 ...)
    (66.0 92.0 63.0 65.0 63.0 75.0 36.0 7.0 79.0 77.0 ...)
    (75.0 86.0 95.0 73.0 66.0 86.0 61.0 34.0 7.0 43.0 ...)
    (11.0 39.0 87.0 31.0 4.0 52.0 64.0 57.0 8.0 23.0 ...)
    (84.0 52.0 49.0 68.0 75.0 14.0 21.0 73.0 57.0 77.0 ...)
    (93.0 85.0 28.0 22.0 98.0 2.0 61.0 48.0 45.0 7.0 ...)
    (81.0 51.0 5.0 36.0 87.0 12.0 84.0 53.0 35.0 78.0 ...)
    ...)
NMF(35): (multiple-value-setq (w h) (nmf-sc x 3 0.7 :type :left))
 #2A((1.4779288903810084e-12 3698.436810921221 508.76839564873075)
    (0.06468571444133886 0.0 4.206412995699793e-12)
    (15616.472155017571 5522.3359228859135 13359.214293446286)
    (0.5537530076878738 0.0030283688683994114 0.46633231671876274)
    (7472.121463556481 0.0 8687.743649034346)
    (866.1770680973686 6831.896141533997 4459.0733598676115)
    (1.5181766737885027 0.4388556634212364 0.727139819117383)
    (0.7198025410086757 0.0047792056984690134 4.206412995699793e-12)
    (1.4779288903810084e-12 0.0 4.206412995699793e-12)
    (0.25528585009283233 0.0 4.206412995699793e-12)
    ...)
NMF(36): h
 #2A((0.00287491870133676 0.0026133720724571797 2.950874161225484e-5 0.005125487883511961 6.757515335801653e-4
     0.0012968322406142806 0.0038001301816957284 0.002985585252159595 0.0081124151768938 0.0042303781451423035 ...)
    (0.004994350656772211 0.0025747747712995227 0.007134096369763904 0.0065746407124065084 0.0038636664279363847
     0.004880229457827016 0.00512112561086382 0.0038194228552171946 0.0050556422535574476 0.003237070939818787 ...)
    (0.0052939720030634446 0.007382671590128047 0.007556184152626243 3.931389819873203e-6 0.004546870255049726
     0.006931587163470776 2.239987792302906e-4 0.001349836871839297 1.94285681454748e-4 0.004391868346075027 ...))
NMF(37): (sparseness (pick-up-column w 0))
0.7
NMF(38): (multiple-value-setq (w h) (nmf-sc x 3 0.9 :type :right))
 #2A((8.289561664219266e-6 1.4361785459627462e-4 3.2783650074466155e-9)
    (8.963543606154278e-5 2.46840968396353e-5 2.181734037947416e-6)
    (2.9872365277908504e-5 1.412292680612174e-4 4.198406652155696e-5)
    (6.890230812495509e-13 7.954471346549545e-5 2.7910446164534665e-5)
    (1.2477626056283604e-4 4.292564917625326e-9 2.5310616226879616e-5)
    (3.619705865699883e-7 1.464351885312363e-4 7.522900946233666e-5)
    (4.19655080884389e-7 1.6289294924375495e-4 3.153712985065881e-5)
    (1.703028808790872e-8 5.8687333880722456e-5 1.2797257648598223e-4)
    (1.4373147157245112e-5 6.128539811119244e-7 9.512691095539368e-5)
    (2.029113599202957e-18 8.421240673252468e-17 1.0537112796313751e-4)
    ...)
NMF(39): h
 #2A((0.0 0.0 559651.4985471596 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...)
    (0.0 0.006235745138837956 588285.0338912416 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...)
    (0.0030094219837337732 0.0 336606.15256656246 0.0 0.0 0.0 0.0 0.0 6.607186514884233e-5 0.0 ...))
NMF(40): (sparseness (pick-up-row h 0))
0.8999999999999999

16.2.1.8 Inherited Function: nmf-search
16.2.1.8.1 Syntax
(nmf-search matrix row-or-column-number &key type (iteration 100) (results 10))
16.2.1.8.2 Description
  • find the related or similar data by using nmf
  • return: nil
  • arguments:
    • non-negative-matrix : (SIMPLE-ARRAY DOUBLE-FLOAT (* * ))
    • row-or-column-number :
    • type :row | :column : query type
    • cost-fn : :euclidean | :kl, default is euclidean
    • iteration : default is 100
    • results : print the number of row data or column data in descending order, default is 10
  • comments : we search the related and/or similar data by using nmf(k=1).
16.2.1.8.2.0.1 sample usage
NMF(96): (setf x (sample-matrix 100 200))
 #2A((62.0 91.0 13.0 64.0 59.0 64.0 92.0 48.0 33.0 31.0 ...)
    (0.0 81.0 61.0 38.0 4.0 14.0 97.0 83.0 92.0 20.0 ...)
    (98.0 74.0 45.0 77.0 87.0 67.0 61.0 25.0 89.0 62.0 ...)
    (14.0 3.0 67.0 16.0 41.0 17.0 90.0 13.0 18.0 2.0 ...)
    (47.0 33.0 81.0 14.0 37.0 46.0 61.0 41.0 74.0 92.0 ...)
    (40.0 1.0 93.0 1.0 22.0 95.0 46.0 77.0 68.0 43.0 ...)
    (27.0 38.0 30.0 8.0 91.0 8.0 51.0 22.0 67.0 3.0 ...)
    (50.0 36.0 13.0 73.0 26.0 32.0 13.0 74.0 96.0 28.0 ...)
    (43.0 21.0 27.0 36.0 29.0 39.0 93.0 53.0 12.0 74.0 ...)
    (10.0 78.0 25.0 92.0 83.0 52.0 47.0 20.0 72.0 3.0 ...)
    ...)
NMF(97): (nmf-search x 113 :type :column)

Feature 0
113   145.19488284162378
17   84.73937398353675
123   83.8805446764401
100   83.74400654487428
183   82.11736662225094
91   81.55075159303482
194   81.04143723738916
188   80.93626654118066
97   80.77377247509784
143   79.9072654735812
NIL

16.2.1.9 Inherited Function: rho-k
16.2.1.9.1 Syntax
(rho-k matrix k &key (type row) (cost-fn euclidean) (iteration 100)
       (repeat 100))
16.2.1.9.2 Description
  • stability of nmf clustering associated with k. we consider k is more stable closer to 1.0.
  • return: DOUBLE-FLOAT
  • arguments:
    • non-negative-matrix : (SIMPLE-ARRAY DOUBLE-FLOAT (* *))
    • k : size of dimension reduction or number of features
    • type : :row | :column, default is row
    • cost-fn : :euclidean | :kl, default is euclidean
    • iteration : default is 100, internal nmf iteration
    • repeat : default is 100, external nmf iteration to compute rho-k
  • comments: Since we need to repeat nmf to take the average and then do hierarchical clustering with ward-method, computing rho-k is slow.
  • reference: Metagenes and molecular pattern discovery using matrix factorization
16.2.1.9.2.0.1 sample usage
NMF(18): (setf matrix (sample-matrix 100 100))
 #2A((37.0 96.0 74.0 31.0 23.0 52.0 77.0 24.0 96.0 68.0 ...)
    (4.0 26.0 41.0 82.0 51.0 10.0 19.0 61.0 48.0 36.0 ...)
    (4.0 91.0 78.0 27.0 72.0 53.0 97.0 7.0 49.0 17.0 ...)
    (45.0 15.0 81.0 65.0 67.0 38.0 66.0 5.0 55.0 88.0 ...)
    (63.0 12.0 56.0 87.0 81.0 1.0 5.0 99.0 88.0 79.0 ...)
    (9.0 26.0 58.0 43.0 38.0 61.0 15.0 47.0 98.0 12.0 ...)
    (56.0 34.0 74.0 84.0 42.0 4.0 1.0 57.0 85.0 65.0 ...)
    (79.0 28.0 9.0 94.0 8.0 72.0 45.0 17.0 85.0 2.0 ...)
    (53.0 41.0 80.0 12.0 69.0 52.0 85.0 94.0 14.0 31.0 ...)
    (20.0 1.0 8.0 40.0 29.0 13.0 75.0 8.0 58.0 26.0 ...)
    ...)
NMF(19): (rho-k matrix 2)
0.9794613282960201
NMF(20): (rho-k matrix 2 :cost-fn :kl)
0.9789550957506326

16.2.1.10 Inherited Function: sample-matrix
16.2.1.10.1 Syntax
(sample-matrix m n)
16.2.1.10.2 Description

16.2.1.11 Inherited Function: sparseness
16.2.1.11.1 Syntax
(sparseness vector)
16.2.1.11.2 Description

16.3 Ambiguous Symbols

16.3.1 Nmf

Disambiguation.

  • Function: nmf
  • Package: nmf

17 Package: clml.clustering.optics

  • Uses: common-lisp, hjs.learn.read-data, hjs.util.matrix, clml.statistics
  • Used by: clml.test, clml.clustering.optics-speed

17.1 Description

OPTICS – density-based clustering package

17.2 External Symbols

17.2.1 External Functions


17.2.1.1 Inherited Function: make-optics-input
17.2.1.1.1 Syntax
(make-optics-input input-data epsilon min-pts r-epsilon &key
                   (distance manhattan) (normalize nil))
17.2.1.1.2 Description

17.2.1.2 Inherited Function: optics
17.2.1.2.1 Syntax
(optics input-path epsilon min-pts r-epsilon target-cols &key (file-type sexp)
        (csv-type-spec '(string double-float double-float))
        (distance manhattan) (normalize nil) (external-format default))
17.2.1.2.2 Description
  • return: optics-output
  • arguments:
    • input-path : <string>
    • epsilon : <number> above 0, neighborhood radius
    • min-pts : <integer> above 0, minimum number of data points
    • r-epsilon : <number> above 0 not more than epsilon, threshold for reachability-distance
    • target-cols : <list string>, the names of target columns, each column's type is :numeric
    • file-type : :sexp | :csv
    • csv-type-spec : <list symbol>, type conversion of each column when reading lines from CSV file, e.g. '(string integer double-float double-float)
    • distance : :manhattan | :euclid | :cosine
    • normalize : t | nil
    • external-format : <acl-external-format>
17.2.1.2.2.0.1 sample usage
OPTICS(10): (optics "https://mmaul.github.io/clml.data/sample/syobu.csv" 10 2 10 '("がく長" "がく幅" "花びら長" "花びら幅")
                     :file-type :csv :csv-type-spec '(string integer integer integer integer) 
                     :distance :manhattan :external-format #+allegro :932 #-allegro :sjis)
 #<OPTICS-OUTPUT>
 [ClusterID] SIZE | [-1] 6 | [1] 48 | [2] 96
OPTICS(11): (ordered-data *)
 #(#("ID" "reachability" "core distance" "ClusterID") #(0 10.1 2.0 1)
  #(4 2.0 2.0 1) #(17 2.0 2.0 1) #(27 2.0 2.0 1) #(28 2.0 2.0 1)
  #(39 2.0 2.0 1) #(37 2.0 4.0 1) #(40 2.0 3.0 1) #(7 2.0 2.0 1) ...)

17.2.1.3 Inherited Function: optics-main
17.2.1.3.1 Syntax
(optics-main optics-input optics-output)
17.2.1.3.2 Description

17.3 Ambiguous Symbols

17.3.1 Optics

Disambiguation.

  • Function: optics
  • Package: optics

18 Package: clml.clustering.optics-speed

  • Uses: clml.clustering.optics, clml.nearest-search.nearest
  • Used by: None.

18.1 Description

18.2 External Symbols

19 Package: clml.clustering.spectral-clustering

  • Uses: common-lisp, hjs.util.matrix, hjs.util.meta
  • Used by: clml.test

19.1 Description

Package for undirected graph clustering

19.2 External Symbols

19.2.1 External Global Variables


19.2.1.1 Inherited Variable: *sample-w*
19.2.1.1.1 Value
#2A((10.0 0.7071 0.3333 0.2774 0.3714)     (0.7071 10.0 0.4472 0.2774 0.2857)
    (0.3333 0.4472 10.0 0.5 0.3124)     (0.2774 0.2774 0.5 10.0 0.4851)    
(0.3714 0.2857 0.3124 0.4851 10.0))

Type: simple-array

19.2.1.1.2 Description

19.2.2 External Functions


19.2.2.1 Inherited Function: spectral-clustering-mcut
19.2.2.1.1 Syntax
(spectral-clustering-mcut w ncls &key (eigen-tolerance 100.0))
19.2.2.1.2 Description
  • return1: Clustering result as a list of list of nodes
  • return2: Status code :success, :questionable, :input-error, or :fatal-error
  • arguments:
    • m : <SIMPLE-ARRAY DOUBLE-FLOAT (* *)>, similarity matrix of a graph
    • ncls : <integer>, number of cluster
    • eigen-tolerance : Acceptable error value for eigen computation

      Patitions non-empty undirected graph W into NCLS clusters with M-cut spectral clustering method where W is a symmetric (N,N) similarity matrix of double-float values and NCLS is a positive integer. The nodes of the graph are the indices of W. The similarity of nodes i and j should be a non-negative double-float value W[i,j]. Each similarity value of node i and itself must be a positive value. The keyword argument EIGEN-TOLERANCE is a positive doulbe-float value or nil which controls accuracy of eigen computation checker described below.

      This function returns two values as a multiple-values. The first is the clustering result as a list of list of nodes. The second is the status symbol of the result as follows.

Status Meaning

:success The result is correct.

:questionable The result may be questionable because a set of eigen values and their vectors returned by the eigen computation library function seems erroneous with an error value, by a measure, greater than specified EIGEN-TOLERANCE. This check is skipped if EIGEN-TOLERANCE is nil.

  • the following cases are fatal and nil is returned as the first value -

:input-error Given arguments does not hold the above conditions.

:fatal-error This situation arise in the following cases:

  1. An eigen computation failed, or
  2. returned eigen values could not halve a cluster.
19.2.2.1.2.0.1 sample usage
 SPECTRAL-CLUSTERING(25): (load "https://mmaul.github.io/clml.data/sample/spectral-clustering-sample.cl" :external-format #+allegro :932 #-allegro :sjis)
 SPECTRAL-CLUSTERING(26): *spectral-nodevector*
 #("満足度" "差別" "林" "NPO" "生きがい" "中学" "服" "社会福祉" "市場" "ADL" ...)
 SPECTRAL-CLUSTERING(27): *spectral-w*
 #2A((1.0 0.0 0.0015822785208001733 0.0 0.0 0.0 0.0
      0.0015822785208001733 0.0 0.0015822785208001733 ...)
     (0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...)
     (0.0015822785208001733 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ...)
     (0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0035273367539048195 0.0 0.0 ...)
     (0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 ...)
     (0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 ...)
     (0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 ...)
     (0.0015822785208001733 0.0 0.0 0.0035273367539048195 0.0 0.0 0.0
      1.0 0.0 0.0 ...)
     (0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 ...)
     (0.0015822785208001733 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 ...)
     ...)
 SPECTRAL-CLUSTERING(28): (spectral-clustering-mcut *spectral-w* 3)
((2 4 6 8 11 12 14 16 18 19 ...) (0 1 3 5 7 9 10 13 15 17 ...)
 (55 73 86 95 111 146 157 257 376))
 :SUCCESS
 SPECTRAL-CLUSTERING(29): (mapcar (lambda (c) (mapcar (lambda (n) (aref *spectral-nodevector* n)) c)) *)
(("林" "生きがい" "服" "市場" "母子" "リサイクル" "腰痛" "手術" "金属" "理論" ...)
 ("満足度" "差別" "NPO" "中学" "社会福祉" "ADL" "癒し" "伊藤" "教材" "ひきこもり" ...)
 ("Method" "system" "language" "study" "education" "Web" "English"
  "japanese" "journal"))
19.2.2.1.2.0.2 References:
  1. Shinnou Hiroyuki,

20 Package: clml.decision-tree.decision-tree

  • Uses: common-lisp, hjs.learn.read-data, hjs.util.matrix
  • Used by: clml.decision-tree.random-forest

20.1 Description

decision tree package

20.2 External Symbols

20.2.1 External Functions


20.2.1.1 Function: column-name->column-number
20.2.1.1.1 Syntax
(column-name->column-number variable-index-hash column-name)
20.2.1.1.2 Description

20.2.1.2 Internal Function: decision-tree-validation
20.2.1.2.1 Syntax
(decision-tree-validation validation-dataset objective-column-name
                          decision-tree)
20.2.1.2.2 Description
  • return: CONS, validation result
  • arguments:
    • unspecialized-dataset : dataset for validation
    • objective-variable-name
    • decision-tree
  • comments : each element of returning association list represents that ((prediction . answer) . number).
20.2.1.2.2.0.1 sample usage
DECISION-TREE(64): (setf *bc-train* (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc.train.csv")
						     :type :csv
						     :csv-type-spec 
						     (append (loop for i below 9 collect 'double-float) '(string))))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
DATA POINTS: 338 POINTS
DECISION-TREE(65): (setf *tree* (make-decision-tree *bc-train* "Class"))
(((("Cell.size" . 4.0)
   (("Bare.nuclei" . 4.0) ("Bare.nuclei" . 1.0) ("Bare.nuclei" . 5.0) ("Bare.nuclei" . 10.0) ("Bare.nuclei" . 2.0) ("Bare.nuclei" . 3.0) ("Bare.nuclei" . 8.0)
    ("Bare.nuclei" . 6.0) ("Bare.nuclei" . 7.0) ("Bare.nuclei" . 9.0) ...))
  (("malignant" . 117) ("benign" . 221)) ((337 334 329 323 317 305 295 292 291 285 ...) (336 335 333 332 331 330 328 327 326 325 ...)))
 (((("Bl.cromatin" . 4.0) (# # # # # # # # # # ...)) (("benign" . 7) ("malignant" . 99))
   ((2 7 10 18 19 25 28 31 34 35 ...) (0 1 20 23 26 54 74 80 119 122 ...)))
  (((# #) (# #) (# #)) ((#) (334 329 323 305 295 292 291 280 275 274 ...)) ((# # #) (# #) (# #)))
  (((# #) (# #) (# #)) ((#) (145 140 133 119 80 54 26 23)) ((# # #) (# #) (# # #))))
 (((("Bare.nuclei" . 6.0) (# # # # # # # # # # ...)) (("malignant" . 18) ("benign" . 214)) ((11 32 60 72 86 128 142 165 170 217) (3 4 5 6 8 9 12 13 14 15 ...)))
  ((("malignant" . 10)) (11 32 60 72 86 128 142 165 170 217)) (((# #) (# #) (# #)) ((#) (131 51 50 27)) ((# # #) (# # #) (# # #)))))
DECISION-TREE(66): (setf *bc-test* (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc.test.csv")
						     :type :csv
						     :csv-type-spec 
						     (append (loop for i below 9 collect 'double-float) '(string))))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
DATA POINTS: 345 POINTS
DECISION-TREE(67): (decision-tree-validation *bc-test* "Class" *tree*)
((("benign" . "malignant") . 4) (("malignant" . "malignant") . 118) (("malignant" . "benign") . 9) (("benign" . "benign") . 214))

20.2.1.3 Function: delta-entropy
20.2.1.3.1 Syntax
(delta-entropy data-vector variable-index-hash list-of-row-numbers
               attribute-column-name attribute objective-column-index)
20.2.1.3.2 Description

20.2.1.4 Function: delta-gini
20.2.1.4.1 Syntax
(delta-gini data-vector variable-index-hash list-of-row-numbers
            attribute-column-name attribute objective-column-index)
20.2.1.4.2 Description

20.2.1.5 Function: delta-variance
20.2.1.5.1 Syntax
(delta-variance data-vector variable-index-hash list-of-row-numbers
                attribute-column-name attribute objective-column-index)
20.2.1.5.2 Description

20.2.1.6 Function: entropy
20.2.1.6.1 Syntax
(entropy sum-up-results-list)
20.2.1.6.2 Description

20.2.1.7 Function: gini-index
20.2.1.7.1 Syntax
(gini-index sum-up-results-list)
20.2.1.7.2 Description

20.2.1.8 Internal Function: make-decision-tree
20.2.1.8.1 Syntax
(make-decision-tree unspecialized-dataset objective-column-name &key
                    (test #'delta-gini) (epsilon 0))
20.2.1.8.2 Description
  • make decision tree based on CART algorithm
  • return: CONS, decision tree
  • arguments:
    • unspecialized-dataset
    • objective-variable-name
    • test : delta-gini | delta-entropy , splitting test-function, default is delta-gini
    • epsilon : pre-pruning parameter, default is 0,
  • comments : when split, we treat string data as nominal scale and numerical data as ordinal scale.
  • reference : Toby Segaran. "Programming Collective Intelligence" ,O'REILLY

20.2.1.9 Internal Function: make-regression-tree
20.2.1.9.1 Syntax
(make-regression-tree unspecialized-dataset objective-column-name &key
                      (test #'delta-variance) (epsilon 0))
20.2.1.9.2 Description
  • return: CONS, regression tree
  • argumrnts:
    • unspecialized-dataset
    • objective-variable-name
    • epsilon : pre-pruning parameter, default is 0
  • comments : we use variance difference as a split criterion.

20.2.1.10 Function: make-split-predicate
20.2.1.10.1 Syntax
(make-split-predicate attribute &optional optimize)
20.2.1.10.2 Description

20.2.1.11 Function: make-variable-index-hash
20.2.1.11.1 Syntax
(make-variable-index-hash unspecialized-dataset)
20.2.1.11.2 Description

20.2.1.12 Inherited Function: mean
20.2.1.12.1 Syntax
(mean sum-up-results-list)
20.2.1.12.2 Description

for regression tree, objective variable is numeric data.


20.2.1.13 Internal Function: predict-decision-tree
20.2.1.13.1 Syntax
(predict-decision-tree query-vector unspecialized-dataset tree)
20.2.1.13.2 Description
  • return: string, prediction
  • arguments:
    • query-vector
    • unspecialized-dataset : dataset used to make a decision tree
    • decision-tree
20.2.1.13.2.0.1 sample usage
DECISION-TREE(40): (setf *syobu* (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/syobu.csv") :type :csv 
                                                     :csv-type-spec
						    '(string integer integer integer integer)))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: 種類 | がく長 | がく幅 | 花びら長 | 花びら幅
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
DATA POINTS: 150 POINTS
DECISION-TREE(41): (setf *tree* (make-decision-tree *syobu* "種類"))
(((("花びら長" . 30)
   (("花びら幅" . 18) ("花びら幅" . 23) ("花びら幅" . 20) ("花びら幅" . 19) ("花びら幅" . 25) ("花びら幅" . 24) ("花びら幅" . 21)
    ("花びら幅" . 14) ("花びら幅" . 15) ("花びら幅" . 22) ...))
  (("Virginica" . 50) ("Versicolor" . 50) ("Setosa" . 50))
  ((149 148 147 146 145 144 143 142 141 140 ...) (49 48 47 46 45 44 43 42 41 40 ...)))
 (((("花びら幅" . 18) (# # # # # # # # # # ...)) (("Versicolor" . 50) ("Virginica" . 50))
   ((70 100 101 102 103 104 105 107 108 109 ...) (50 51 52 53 54 55 56 57 58 59 ...)))
  (((# #) (# #) (# #)) ((#) (149 148 147 146 145 144 143 142 141 140 ...)) ((# # #) (# #) (# #)))
  (((# #) (# #) (# #)) ((# # #) (# # #) (# #)) ((# # #) (# #) (# #))))
 ((("Setosa" . 50)) (49 48 47 46 45 44 43 42 41 40 ...)))
DECISION-TREE(42): (print-decision-tree *tree*)
[30 <= 花びら長?]((Virginica . 50) (Versicolor . 50) (Setosa . 50))
   Yes->[18 <= 花びら幅?]((Versicolor . 50) (Virginica . 50))
      Yes->[49 <= 花びら長?]((Virginica . 45) (Versicolor . 1))
         Yes->((Virginica . 43))
         No->[31 <= がく幅?]((Versicolor . 1) (Virginica . 2))
            Yes->((Versicolor . 1))
            No->((Virginica . 2))
      No->[50 <= 花びら長?]((Virginica . 5) (Versicolor . 49))
         Yes->[16 <= 花びら幅?]((Versicolor . 2) (Virginica . 4))
            Yes->[53 <= 花びら長?]((Virginica . 1) (Versicolor . 2))
               Yes->((Virginica . 1))
               No->((Versicolor . 2))
            No->((Virginica . 3))
         No->[17 <= 花びら幅?]((Versicolor . 47) (Virginica . 1))
            Yes->((Virginica . 1))
            No->((Versicolor . 47))
   No->((Setosa . 50))
NIL
DECISION-TREE(43): (make-decision-tree *syobu* "種類" :epsilon 0.1)
(((("花びら長" . 30)
   (("花びら幅" . 18) ("花びら幅" . 23) ("花びら幅" . 20) ("花びら幅" . 19) ("花びら幅" . 25) ("花びら幅" . 24) ("花びら幅" . 21)
    ("花びら幅" . 14) ("花びら幅" . 15) ("花びら幅" . 22) ...))
  (("Virginica" . 50) ("Versicolor" . 50) ("Setosa" . 50))
  ((149 148 147 146 145 144 143 142 141 140 ...) (49 48 47 46 45 44 43 42 41 40 ...)))
 (((("花びら幅" . 18) (# # # # # # # # # # ...)) (("Versicolor" . 50) ("Virginica" . 50))
   ((70 100 101 102 103 104 105 107 108 109 ...) (50 51 52 53 54 55 56 57 58 59 ...)))
  ((("Virginica" . 45) ("Versicolor" . 1)) (70 100 101 102 103 104 105 107 108 109 ...))
  ((("Virginica" . 5) ("Versicolor" . 49)) (50 51 52 53 54 55 56 57 58 59 ...)))
 ((("Setosa" . 50)) (49 48 47 46 45 44 43 42 41 40 ...)))
DECISION-TREE(44): (print-decision-tree *)
[30 <= 花びら長?]((Virginica . 50) (Versicolor . 50) (Setosa . 50))
   Yes->[18 <= 花びら幅?]((Versicolor . 50) (Virginica . 50))
      Yes->((Virginica . 45) (Versicolor . 1))
      No->((Virginica . 5) (Versicolor . 49))
   No->((Setosa . 50))
NIL
DECISION-TREE(45): (setf *query* #("?" 53 30 33 10))
 #("?" 53 30 33 10)
DECISION-TREE(46): (predict-decision-tree *query* *syobu* *tree*)
"Versicolor"

20.2.1.14 Internal Function: predict-regression-tree
20.2.1.14.1 Syntax
(predict-regression-tree query-vector unspecialized-dataset tree)
20.2.1.14.2 Description
  • return: real, predictive value
  • arguments:
    • query-vector :
    • unspecialized-dataset : used dataset to make the regression tree
    • regression-tree
20.2.1.14.2.0.1 sample usage
DECISION-TREE(68): (setf *cars* (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/cars.csv") :type :csv
						      :csv-type-spec '(double-float double-float)))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: speed | distance
TYPES:      UNKNOWN | UNKNOWN
DATA POINTS: 50 POINTS
DECISION-TREE(69): (setf *tree* (make-regression-tree *cars* "distance" :epsilon 35))
(((("speed" . 18.0)
   (("speed" . 25.0) ("speed" . 24.0) ("speed" . 23.0) ("speed" . 22.0) ("speed" . 20.0)
    ("speed" . 19.0) ("speed" . 17.0) ("speed" . 16.0) ("speed" . 15.0) ("speed" . 14.0) ...))
  ((85.0 . 1) (120.0 . 1) (93.0 . 1) (92.0 . 1) (70.0 . 1) (66.0 . 1) (64.0 . 1) (52.0 . 1)
   (48.0 . 1) (68.0 . 1) ...)
  ((49 48 47 46 45 44 43 42 41 40 ...) (30 29 28 27 26 25 24 23 22 21 ...)))
 (((("speed" . 24.0) (# # # # # # # # # # ...))
   ((42.0 . 1) (76.0 . 1) (84.0 . 1) (36.0 . 1) (46.0 . 1) (68.0 . 1) (32.0 . 1) (48.0 . 1)
    (52.0 . 1) (56.0 . 2) ...)
   ((45 46 47 48 49) (31 32 33 34 35 36 37 38 39 40 ...)))
  (((85.0 . 1) (120.0 . 1) (93.0 . 1) (92.0 . 1) (70.0 . 1)) (45 46 47 48 49))
  (((54.0 . 1) (66.0 . 1) (64.0 . 1) (52.0 . 1) (48.0 . 1) (32.0 . 1) (68.0 . 1) (46.0 . 1)
    (36.0 . 1) (84.0 . 1) ...)
   (31 32 33 34 35 36 37 38 39 40 ...)))
 (((("speed" . 13.0) (# # # # # # # # # # ...))
   ((2.0 . 1) (4.0 . 1) (22.0 . 1) (16.0 . 1) (10.0 . 2) (18.0 . 1) (17.0 . 1) (14.0 . 1)
    (24.0 . 1) (28.0 . 2) ...)
   ((15 16 17 18 19 20 21 22 23 24 ...) (0 1 2 3 4 5 6 7 8 9 ...)))
  (((50.0 . 1) (40.0 . 2) (32.0 . 2) (54.0 . 1) (20.0 . 1) (80.0 . 1) (60.0 . 1) (36.0 . 1)
    (46.0 . 1) (34.0 . 2) ...)
   (15 16 17 18 19 20 21 22 23 24 ...))
  (((# #) (# # # # # # # # # # ...) (# #)) ((# # # # # # # #) (14 13 12 11 10 9 8 7 6))
   ((# # # # #) (5 4 3 2 1 0)))))
DECISION-TREE(70): (print-regression-tree *tree*)
[18.0 <= speed?] (mean = 42.98, n = 50)
   Yes->[24.0 <= speed?] (mean = 65.26, n = 19)
      Yes->(mean = 92.00, n = 5)
      No->(mean = 55.71, n = 14)
   No->[13.0 <= speed?] (mean = 29.32, n = 31)
      Yes->(mean = 39.75, n = 16)
      No->[10.0 <= speed?] (mean = 18.20, n = 15)
         Yes->(mean = 23.22, n = 9)
         No->(mean = 10.67, n = 6)
NIL
DECISION-TREE(71): (setf *query* #(24.1 "?"))
 #(24.1 "?")
DECISION-TREE(72): (predict-regression-tree *query* *cars* *tree*)
92.0

20.2.1.15 Internal Function: print-decision-tree
20.2.1.15.1 Syntax
(print-decision-tree decision-tree &optional (stream t) (indent 0))
20.2.1.15.2 Description

20.2.1.16 Internal Function: print-regression-tree
20.2.1.16.1 Syntax
(print-regression-tree regression-tree &optional (stream t) (indent 0))
20.2.1.16.2 Description
  • return: NIL
  • arguments:
    • decision-tree
    • stream : default is T

20.2.1.17 Internal Function: regression-tree-validation
20.2.1.17.1 Syntax
(regression-tree-validation validation-dataset objective-column-name
                            regression-tree)
20.2.1.17.2 Description
  • return: MSE (Mean Squared Error)
  • arguments:
    • unspecialized-dataset : for validation
    • objective-variable-name
    • regression-tree
20.2.1.17.2.0.1 sample usage
DECISION-TREE(10): (setf *bc-train* (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc.train.csv")
						     :type :csv
						     :csv-type-spec 
						     (append (loop for i below 9 collect 'double-float) '(string))))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
DATA POINTS: 338 POINTS
DECISION-TREE(11): (setf *tree* (make-regression-tree *bc-train* "Cell.size"))
(((("Class" . "benign")
   (("Bare.nuclei" . 4.0) ("Bare.nuclei" . 1.0) ("Bare.nuclei" . 5.0) ("Bare.nuclei" . 10.0) ("Bare.nuclei" . 2.0)
    ("Bare.nuclei" . 3.0) ("Bare.nuclei" . 8.0) ("Bare.nuclei" . 6.0) ("Bare.nuclei" . 7.0) ("Bare.nuclei" . 9.0) ...))
  ((7.0 . 10) (9.0 . 3) (3.0 . 22) (6.0 . 11) (5.0 . 18) (2.0 . 22) (1.0 . 188) (10.0 . 25) (8.0 . 19) (4.0 . 20))
  ((336 335 333 332 331 330 328 327 326 325 ...) (337 334 329 323 305 295 292 291 285 280 ...)))
 (((("Cell.shape" . 7.0) (# # # # # # # # # # ...)) ((8.0 . 1) (7.0 . 1) (4.0 . 5) (2.0 . 15) (3.0 . 12) (1.0 . 187))
   ((1 124) (0 3 4 5 6 8 9 12 13 14 ...)))
  (((# #) (# #) (# #)) ((#) (1)) ((#) (124))) (((# #) (# # # #) (# #)) ((# # #) (# # #) (# # #)) ((# # #) (# #) (# # #))))
 (((("Cell.shape" . 7.0) (# # # # # # # # # # ...))
   ((1.0 . 1) (2.0 . 7) (9.0 . 3) (3.0 . 10) (6.0 . 11) (4.0 . 15) (5.0 . 18) (7.0 . 9) (10.0 . 25) (8.0 . 18))
   ((2 23 52 55 71 76 80 83 84 85 ...) (7 10 11 18 19 20 24 25 26 27 ...)))
  (((# #) (# # # # # #) (# #)) ((# # #) (# # #) (# # #)) ((# # #) (# # #) (# # #)))
  (((# #) (# # # # # # # # #) (# #)) ((# # #) (# #) (# # #)) ((# # #) (# # #) (# # #)))))
DECISION-TREE(12): (setf *bc-test* (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc.test.csv")
						     :type :csv
						     :csv-type-spec 
						     (append (loop for i below 9 collect 'double-float) '(string))))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
DATA POINTS: 345 POINTS
DECISION-TREE(13): (regression-tree-validation *bc-test* "Cell.size" *tree*)
2.356254428341385

20.2.1.18 Function: split
20.2.1.18.1 Syntax
(split data-vector variable-index-hash list-of-row-numbers
       attribute-column-name attribute)
20.2.1.18.2 Description

20.2.1.19 Function: sum-up
20.2.1.19.1 Syntax
(sum-up lst)
20.2.1.19.2 Description

20.2.1.20 Function: sum-up-results
20.2.1.20.1 Syntax
(sum-up-results)
20.2.1.20.2 Description

20.2.1.21 Internal Function: total
20.2.1.21.1 Syntax
(total sum-up-results-list)
20.2.1.21.2 Description

20.2.1.22 Inherited Function: variance
20.2.1.22.1 Syntax
(variance sum-up-results-list)
20.2.1.22.2 Description

for regression tree, objective variable is numeric data.


20.2.1.23 Function: whole-row-numbers-list
20.2.1.23.1 Syntax
(whole-row-numbers-list data-vector)
20.2.1.23.2 Description

21 Package: clml.decision-tree.random-forest

  • Uses: common-lisp, hjs.learn.read-data, clml.decision-tree.decision-tree
  • Used by: clml.test

21.1 Description

random forest package

21.1.0.1 sample usage
RANDOM-FOREST(40): (setf *bc-train* (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc.train.csv")
						     :type :csv
						     :csv-type-spec 
						     (append (loop for i below 9 collect 'double-float) '(string))))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
DATA POINTS: 338 POINTS
RANDOM-FOREST(41):(setf *regression-forest* (make-regression-forest *bc-train* "Cell.size"))
 #((((("Class" . "malignant") NIL)
    ((9.0 . 2) (6.0 . 7) (7.0 . 12) (8.0 . 22) (5.0 . 20) (3.0 . 23) (4.0 . 25) (1.0 . 164) (2.0 . 32) (10.0 . 31))
    ((335 327 322 321 320 319 318 314 312 310 ...) (337 336 334 333 332 331 330 329 328 326 ...)))
   (((# NIL) (# # # # # # # # # #) (# #)) ((# # #) (# # #) (# # #)) ((# # #) (# # #) (# # #)))
   (((# NIL) (# # # # #) (# #)) ((# # #) (# #) (# # #)) ((# # #) (# #) (# # #))))
  (((("Cell.shape" . 6.0) NIL)
    ((9.0 . 1) (2.0 . 20) (5.0 . 16) (7.0 . 13) (4.0 . 16) (3.0 . 19) (10.0 . 20) (6.0 . 10) (8.0 . 22) (1.0 . 201))
    ((335 326 325 317 316 314 312 311 307 299 ...) (337 336 334 333 332 331 330 329 328 327 ...)))
   (((# NIL) (# # # # # # #) (# #)) ((# # #) (# # #) (# #)) ((# # #) (# # #) (# # #)))
   (((# NIL) (# # # # # # # # #) (# #)) ((# # #) (# # #) (# # #)) ((# # #) (# # #) (# # #))))
  (((("Epith.c.size" . 3.0) NIL)
    ((9.0 . 4) (2.0 . 16) (4.0 . 23) (7.0 . 9) (6.0 . 5) (3.0 . 24) (5.0 . 16) (10.0 . 17) (8.0 . 21) (1.0 . 203))
    ((334 332 324 320 319 315 314 313 312 308 ...) (337 336 335 333 331 330 329 328 327 326 ...)))
   (((# NIL) (# # # # # # # # # #) (# #)) ((# # #) (# # #) (# # #)) ((# # #) (# # #) (# # #)))
   (((# NIL) (# # # # #) (# #)) ((# # #) (# # #) (# # #)) ((# # #) (# #) (# # #))))
  ...)
RANDOM-FOREST(42): (setf *query* #(5.0 "?" 1.0 1.0 2.0 1.0 3.0 1.0 1.0 "benign"))
 #(5.0 "?" 1.0 1.0 2.0 1.0 3.0 1.0 1.0 "benign")
RANDOM-FOREST(43): (predict-regression-forest *query* *bc-train* *regression-forest*)
1.0172789943526082
RANDOM-FOREST(44): (setf *bc-test* (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc.test.csv")
						     :type :csv
						     :csv-type-spec 
						     (append (loop for i below 9 collect 'double-float) '(string))))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
DATA POINTS: 345 POINTS
RANDOM-FOREST(45): (regression-forest-validation *bc-test* "Cell.size" *regression-forest*)
1.6552628917521726

21.2 External Symbols

21.2.1 External Functions


21.2.1.1 Inherited Function: forest-validation
21.2.1.1.1 Syntax
(forest-validation validation-dataset objective-column-name forest)
21.2.1.1.2 Description
  • return: CONS, validation result
  • arguments:
    • unspecialized-dataset : dataset for validation
    • objective-variable-name
    • forest
  • comments : each element of returning association list represents that ((prediction . answer) . number).

21.2.1.2 Inherited Function: importance
21.2.1.2.1 Syntax
(importance forest)
21.2.1.2.2 Description
  • importance of explanatory variables
  • return: NIL
  • arguments:
    • forest

21.2.1.3 Inherited Function: make-random-forest
21.2.1.3.1 Syntax
(make-random-forest unspecialized-dataset objective-column-name &key
                    (test #'delta-gini) (tree-number 500))
21.2.1.3.2 Description

21.2.1.4 Inherited Function: make-regression-forest
21.2.1.4.1 Syntax
(make-regression-forest unspecialized-dataset objective-column-name &key
                        (tree-number 500))
21.2.1.4.2 Description

21.2.1.5 Inherited Function: predict-forest
21.2.1.5.1 Syntax
(predict-forest query-vector unspecialized-dataset forest)
21.2.1.5.2 Description
  • return: string, prediction
  • arguments:
    • query-vector
    • unspecialized-dataset : dataset used to make a random forest
    • forest
  • comments : make predictions by a majority vote of decision trees in random forest.

21.2.1.6 Inherited Function: predict-regression-forest
21.2.1.6.1 Syntax
(predict-regression-forest query-vector unspecialized-dataset forest)
21.2.1.6.2 Description

21.2.1.7 Inherited Function: regression-forest-validation
21.2.1.7.1 Syntax
(regression-forest-validation validation-dataset objective-column-name
                              regression-forest)
21.2.1.7.2 Description

22 Package: clml.docs

  • Uses: common-lisp, iterate, cl-ppcre, clod
  • Used by: None.

22.1 Description

API Documentation Generation System for CLML

22.2 External Symbols

22.2.1 External Functions


22.2.1.1 Function: generate-clml-api-docs
22.2.1.1.1 Syntax
(generate-clml-api-docs)
22.2.1.1.2 Description

Generates Org API documentation in the clml/docs/api directory from loaded packages for CLML for packages matching the following prefix patterns: +clml[.] +lapack +hjs +blas +future +fork-future

Documentation is in the form of Org files where one Org file per package is placed in clml/docs/api. A package index file containing Org INCLUDE directives that include Org placed generated in clml/docs/api.

23 Package: clml.graph.graph-anomaly-detection

  • Uses: common-lisp, hjs.learn.vars, hjs.util.matrix, hjs.util.vector, hjs.util.meta, clml.statistics, hjs.learn.read-data, hjs.util.missing-value, clml.utility.csv, clml.time-series.util, clml.time-series.read-data, clml.time-series.statistics, clml.time-series.state-space, clml.time-series.autoregression, clml.graph.read-graph, clml.graph.graph-centrality, clml.graph.shortest-path
  • Used by: None.

23.1 Description

23.2 External Symbols

24 Package: clml.graph.graph-centrality

  • Uses: common-lisp, hjs.learn.vars, hjs.util.matrix, hjs.util.vector, hjs.util.meta, clml.statistics, clml.graph.read-graph, clml.graph.graph-utils, clml.graph.shortest-path
  • Used by: clml.graph.graph-anomaly detection

24.1 Description

Graph Centrailty

24.1.0.1 sample usage
GRAPH-CENTRALITY(36): (setf gr (let* ((id-name-alist (loop for i from 1 to 6
                                                         collect (cons i (format nil "~A" i))))
                                      (edgelist (list (list :nid1 1 :nid2 2 :weight 1d0)
                                                      (list :nid1 2 :nid2 3 :weight 1d0)
                                                      (list :nid1 2 :nid2 5 :weight 1d0)
                                                      (list :nid1 4 :nid2 5 :weight 1d0)
                                                      (list :nid1 5 :nid2 6 :weight 1d0)
                                                      (list :nid1 6 :nid2 4 :weight 1d0))))
                                 (make-simple-graph id-name-alist 
                                                    :edgelist edgelist
                                                    :directed nil)))
#<SIMPLE-GRAPH >
6 nodes
6 links
GRAPH-CENTRALITY(37): (eccentricity-centrality gr)
#(0.3333333333333333 0.5 0.3333333333333333 0.3333333333333333 0.5 0.3333333333333333)
GRAPH-CENTRALITY(38): (closeness-centrality gr)
#(0.09090909090909091 0.14285714285714285 0.09090909090909091 0.1 0.14285714285714285 0.1)
GRAPH-CENTRALITY(39): (degree-centrality gr)
#(1.0 3.0 1.0 2.0 3.0 2.0)
GRAPH-CENTRALITY(40): (eigen-centrality gr)
#(0.18307314221469623 0.41711633875524184 0.18307314221469628 0.45698610699552694
  0.5842172585338801 0.45698610699552716)
2.2784136094964444
GRAPH-CENTRALITY(41): (pagerank gr)
#(0.22515702990803205 0.5915609362243119 0.22515702990803205 0.3631199718377685 0.5338090057356462
  0.3631199718377685)

24.2 External Symbols

24.2.1 External Functions


24.2.1.1 Function: closeness-centrality
24.2.1.1.1 Syntax
(closeness-centrality g &key (standardize nil))
24.2.1.1.2 Description
  • return: (SIMPLE-ARRAY DOUBLE-FLOAT (* )), vector of centraliry
  • argument:
    • graph: return value of #'make-simple-graph
    • standardize: t | nil, standardize centrality or not

24.2.1.2 Function: degree-centrality
24.2.1.2.1 Syntax
(degree-centrality g &key (mode in) (standardize nil))
24.2.1.2.2 Description
  • return: (SIMPLE-ARRAY DOUBLE-FLOAT (* )), vector of centraliry
  • argument:
    • graph: return value of #'make-simple-graph
    • mode: :in | :out
    • standardize: t | nil, standardize centrality or not

24.2.1.3 Function: eccentricity-centrality
24.2.1.3.1 Syntax
(eccentricity-centrality g)
24.2.1.3.2 Description
  • return: (SIMPLE-ARRAY DOUBLE-FLOAT (* )), vector of centraliry
  • argument:
    • graph: return value of #'make-simple-graph

24.2.1.4 Function: eigen-centrality
24.2.1.4.1 Syntax
(eigen-centrality gr &key (stabilizer nil))
24.2.1.4.2 Description

24.2.1.5 Function: pagerank
24.2.1.5.1 Syntax
(pagerank g &key (c 0.85))
24.2.1.5.2 Description
  • return: (SIMPLE-ARRAY DOUBLE-FLOAT (* )), vector of centraliry
  • argument:
    • graph: return value of #'make-simple-graph
    • c : ratio for transition probability matrix

The separation / directed graph, principal eigen vector is not determined because it is not often a strong connection. Order to strongly connected to it, it is assumed that the link of small weight among all the nodes of the transition probability matrix in pagerank. The parameter for adjusting the weight, the weight decreases as large, the transition probability of the actual link is priority c.

  • reference: L. Page, S. Brin, R. Motwani, T. Winograd The PageRank citation ranking: Bringing order to the web. 1999

25 Package: clml.graph.graph-utils

  • Uses: common-lisp, org.mapcar.parse-number, hjs.util.matrix, hjs.util.vector, hjs.util.meta, clml.graph.read-graph
  • Used by: clml.graph.graph-centrality, clml.graph.shortest-path

25.1 Description

25.2 External Symbols

25.2.1 External Functions


25.2.1.1 Function: adjacency
25.2.1.1.1 Syntax
(adjacency nd gr)
25.2.1.1.2 Description

25.2.1.2 Function: adjacency-matrix
25.2.1.2.1 Syntax
(adjacency-matrix gr)
25.2.1.2.2 Description

25.2.1.3 Function: get-connected-components
25.2.1.3.1 Syntax
(get-connected-components gr)
25.2.1.3.2 Description

25.2.1.4 Function: retrieve-link
25.2.1.4.1 Syntax
(retrieve-link gr nid1-or-name nid2-or-name)
25.2.1.4.2 Description

25.2.1.5 Function: retrieve-node
25.2.1.5.1 Syntax
(retrieve-node gr id-or-name)
25.2.1.5.2 Description

26 Package: clml.graph.read-graph

  • Uses: common-lisp, org.mapcar.parse-number, hjs.util.matrix, hjs.util.vector, hjs.util.meta
  • Used by: clml.graph.graph-anomaly detection, clml.graph.graph centrality, clml.graph.shortest-path, clml.graph.graph-utils

26.1 Description

26.2 External Symbols

26.2.1 External Classes


26.2.1.1 Class: simple-graph
26.2.1.1.1 Inheritance
  • Parent classes: graph
  • Precedence list: simple-graph, graph, standard-object, slot-object, t
  • Direct subclasses: None.
26.2.1.1.2 Description
26.2.1.1.3 Direct Slots
26.2.1.1.3.1 Slot: links
  • Value type: t
  • Initial value: NIL
  • Initargs: links
  • Allocation: instance
26.2.1.1.3.1.1 Accessors

26.2.1.1.3.1.1.1 Slot Accessor: links
26.2.1.1.3.1.1.1.1 Syntax
(links object)
26.2.1.1.3.1.1.1.2 Methods
  • (links (simple-graph clml.graph.read graph:simple-graph))
26.2.1.1.3.2 Slot: link-hashtab
  • Value type: t
  • Initial value: (MAKE-HASH-TABLE :TEST #'EQUAL)
  • Initargs: none
  • Allocation: instance
26.2.1.1.3.2.1 Accessors

26.2.1.1.3.2.1.1 Slot Accessor: link-hashtab
26.2.1.1.3.2.1.1.1 Syntax
(link-hashtab object)
26.2.1.1.3.2.1.1.2 Methods
  • (link-hashtab (simple-graph clml.graph.read-graph:simple-graph))
26.2.1.1.3.3 Slot: directed-p
  • Value type: t
  • Initial value: NIL
  • Initargs: directed-p
  • Allocation: instance
26.2.1.1.3.3.1 Accessors

26.2.1.1.3.3.1.1 Slot Accessor: directed-p
26.2.1.1.3.3.1.1.1 Syntax
(directed-p object)
26.2.1.1.3.3.1.1.2 Methods
  • (directed-p (simple-graph clml.graph.read-graph:simple-graph))
26.2.1.1.4 Indirect Slots
26.2.1.1.4.1 Slot: node-hashtab
  • Value type: t
  • Initial value: (MAKE-HASH-TABLE :TEST #'EQL)
  • Initargs: none
  • Allocation: instance
26.2.1.1.4.2 Slot: nodes
  • Value type: t
  • Initial value: NIL
  • Initargs: nodes
  • Allocation: instance

26.2.1.2 Class: simple-graph-series
26.2.1.2.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: simple-graph-series, standard-object, slot-object, t
  • Direct subclasses: None.
26.2.1.2.2 Description
26.2.1.2.3 Direct Slots
26.2.1.2.3.1 Slot: graphs
  • Value type: t
  • Initial value: NIL
  • Initargs: graphs
  • Allocation: instance
26.2.1.2.3.1.1 Accessors

26.2.1.2.3.1.1.1 Slot Accessor: graphs
26.2.1.2.3.1.1.1.1 Syntax
(graphs object)
26.2.1.2.3.1.1.1.2 Methods
  • (graphs (simple-graph-series clml.graph.read-graph:simple-graph-series))
26.2.1.2.3.2 Slot: graph-labels
  • Value type: t
  • Initial value: NIL
  • Initargs: graph-labels
  • Allocation: instance
26.2.1.2.3.2.1 Accessors

26.2.1.2.3.2.1.1 Slot Accessor: graph-labels
26.2.1.2.3.2.1.1.1 Syntax
(graph-labels object)
26.2.1.2.3.2.1.1.2 Methods
  • (graph-labels (simple-graph-series clml.graph.read-graph:simple-graph-series))

26.2.2 External Structures


26.2.2.1 Structure: link
26.2.2.1.1 Description
26.2.2.1.2 Slots
26.2.2.1.2.1 Internal Slot: weight
  • Value type: double-float
  • Initial value: 1.0
  • Initargs: none
  • Allocation: instance
26.2.2.1.2.2 Slot: node1
  • Value type: fixnum
  • Initial value: -1
  • Initargs: none
  • Allocation: instance
26.2.2.1.2.3 Slot: node2
  • Value type: fixnum
  • Initial value: -1
  • Initargs: none
  • Allocation: instance
26.2.2.1.2.4 Slot: directed
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

26.2.2.2 Structure: node
26.2.2.2.1 Description
26.2.2.2.2 Slots
26.2.2.2.2.1 Inherited Slot: id
  • Value type: fixnum
  • Initial value: -1
  • Initargs: none
  • Allocation: instance
26.2.2.2.2.2 Internal Slot: name
  • Value type: string
  • Initial value: =""=
  • Initargs: none
  • Allocation: instance
26.2.2.2.2.3 Slot: links
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
26.2.2.2.2.4 Slot: buff
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

26.2.3 External Macros


26.2.3.1 Macro: do-graph-series
26.2.3.1.1 Syntax
(do-graph-series ((gr label) stream &key (format sexp) (directed nil) (start 0)
                  (end nil) (start-label nil) (end-label nil)
                  (target-labels nil) (target-nodes nil))
  &body
  body)
26.2.3.1.2 Description

Repeatedly call BODY on Graph-Series stream STREAM, binding GR and LABEL to a class SIMPLE-GRAPH and the label string.

26.2.4 External Functions


26.2.4.1 Function: directed-p
26.2.4.1.1 Syntax
(directed-p object)
26.2.4.1.2 Description

26.2.4.2 Function: graphs
26.2.4.2.1 Syntax
(graphs object)
26.2.4.2.2 Description

26.2.4.3 Function: link-directed
26.2.4.3.1 Syntax
(link-directed instance)
26.2.4.3.2 Description

26.2.4.4 Function: link-node1
26.2.4.4.1 Syntax
(link-node1 instance)
26.2.4.4.2 Description

26.2.4.5 Function: link-node2
26.2.4.5.1 Syntax
(link-node2 instance)
26.2.4.5.2 Description

26.2.4.6 Function: link-weight
26.2.4.6.1 Syntax
(link-weight instance)
26.2.4.6.2 Description

26.2.4.7 Function: links
26.2.4.7.1 Syntax
(links object)
26.2.4.7.2 Description

26.2.4.8 Function: make-simple-graph
26.2.4.8.1 Syntax
(make-simple-graph id-name-alist &key (adjacency-matrix nil) (edgelist nil)
                   (directed nil))
26.2.4.8.2 Description
  • argument:
    • id-name-alist : association list of node's ID and name. ID is a positive integer, there are no gaps.
    • edgelist : list of plist, plist is like (:nid1 <initial-vertex-ID> :nid2 <terminal-vertex-ID> :weight <weight-for-edge>)
    • directed : t | nil, the graph is directed or not.
26.2.4.8.2.0.1 sample usage
READ-GRAPH(19): (let* ((id-name-alist (loop for i from 1 to 6
                                          collect (cons i (format nil "~A" i))))
                       (edgelist (list (list :nid1 1 :nid2 2 :weight 1d0)
                                       (list :nid1 2 :nid2 3 :weight 1d0)
                                       (list :nid1 2 :nid2 5 :weight 1d0)
                                       (list :nid1 4 :nid2 5 :weight 1d0)
                                       (list :nid1 5 :nid2 6 :weight 1d0)
                                       (list :nid1 6 :nid2 4 :weight 1d0))))
                  (make-simple-graph id-name-alist 
                                     :edgelist edgelist
                                     :directed nil))
#<SIMPLE-GRAPH >
6 nodes
6 links

26.2.4.9 Function: node-buff
26.2.4.9.1 Syntax
(node-buff instance)
26.2.4.9.2 Description

26.2.4.10 Function: node-id
26.2.4.10.1 Syntax
(node-id instance)
26.2.4.10.2 Description

26.2.4.11 Function: node-links
26.2.4.11.1 Syntax
(node-links instance)
26.2.4.11.2 Description

26.2.4.12 Function: node-name
26.2.4.12.1 Syntax
(node-name instance)
26.2.4.12.2 Description

26.2.4.13 Function: nodes
26.2.4.13.1 Syntax
(nodes object)
26.2.4.13.2 Description

26.2.4.14 Function: read-graph
26.2.4.14.1 Syntax
(read-graph fname &key (format sexp) (directed nil) (external-format default)
            (id-name-alist nil) (labelp nil))
26.2.4.14.2 Description

26.2.4.15 Function: read-graph-series
26.2.4.15.1 Syntax
(read-graph-series fname &key (format sexp) (directed nil)
                   (external-format default) (start 0) (end nil)
                   (start-label nil) (end-label nil) (target-labels nil)
                   (target-nodes nil))
26.2.4.15.2 Description

26.3 Ambiguous Symbols

26.3.1 Read-Graph

Disambiguation.

  • Function: clml.graph.read-graph:read-graph
  • Package: clml.graph.read-graph:read-graph

27 Package: clml.graph.shortest-path

  • Uses: common-lisp, hjs.util.meta, hjs.util.vector, hjs.learn.read-data, hjs.util.matrix, clml.graph.read-graph, clml.graph.graph-utils, clml.utility.priority-que, hjs.util.missing-value
  • Used by: clml.graph.graph-anomaly detection, clml.graph.graph centrality

27.1 Description

27.2 External Symbols

27.2.1 External Functions


27.2.1.1 Function: %find-all-shortest-paths
27.2.1.1.1 Syntax
(%find-all-shortest-paths d-mat path-mat start-i dest-i &key (d-thld nil))
27.2.1.1.2 Description

27.2.1.2 Function: find-shortest-path-dijkstra
27.2.1.2.1 Syntax
(find-shortest-path-dijkstra gr start-id-or-name &key (end-id-or-name nil)
                             (data-structure binary))
27.2.1.2.2 Description

27.2.1.3 Function: graph-distance-matrix
27.2.1.3.1 Syntax
(graph-distance-matrix gr &optional (path-mat-p))
27.2.1.3.2 Description

28 Package: clml.nearest-search.k-nn

  • Uses: common-lisp, hjs.util.vector, hjs.learn.read-data, hjs.util.meta
  • Used by: None.

28.1 Description

28.1.0.1 sample usage
RANDOM-FOREST(40): (setf *bc-train* (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc.train.csv")
						     :type :csv
						     :csv-type-spec 
						     (append (loop for i below 9 collect 'double-float) '(string))))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
DATA POINTS: 338 POINTS
RANDOM-FOREST(41):(setf *regression-forest* (make-regression-forest *bc-train* "Cell.size"))
 #((((("Class" . "malignant") NIL)
    ((9.0 . 2) (6.0 . 7) (7.0 . 12) (8.0 . 22) (5.0 . 20) (3.0 . 23) (4.0 . 25) (1.0 . 164) (2.0 . 32) (10.0 . 31))
    ((335 327 322 321 320 319 318 314 312 310 ...) (337 336 334 333 332 331 330 329 328 326 ...)))
   (((# NIL) (# # # # # # # # # #) (# #)) ((# # #) (# # #) (# # #)) ((# # #) (# # #) (# # #)))
   (((# NIL) (# # # # #) (# #)) ((# # #) (# #) (# # #)) ((# # #) (# #) (# # #))))
  (((("Cell.shape" . 6.0) NIL)
    ((9.0 . 1) (2.0 . 20) (5.0 . 16) (7.0 . 13) (4.0 . 16) (3.0 . 19) (10.0 . 20) (6.0 . 10) (8.0 . 22) (1.0 . 201))
    ((335 326 325 317 316 314 312 311 307 299 ...) (337 336 334 333 332 331 330 329 328 327 ...)))
   (((# NIL) (# # # # # # #) (# #)) ((# # #) (# # #) (# #)) ((# # #) (# # #) (# # #)))
   (((# NIL) (# # # # # # # # #) (# #)) ((# # #) (# # #) (# # #)) ((# # #) (# # #) (# # #))))
  (((("Epith.c.size" . 3.0) NIL)
    ((9.0 . 4) (2.0 . 16) (4.0 . 23) (7.0 . 9) (6.0 . 5) (3.0 . 24) (5.0 . 16) (10.0 . 17) (8.0 . 21) (1.0 . 203))
    ((334 332 324 320 319 315 314 313 312 308 ...) (337 336 335 333 331 330 329 328 327 326 ...)))
   (((# NIL) (# # # # # # # # # #) (# #)) ((# # #) (# # #) (# # #)) ((# # #) (# # #) (# # #)))
   (((# NIL) (# # # # #) (# #)) ((# # #) (# # #) (# # #)) ((# # #) (# #) (# # #))))
  ...)
RANDOM-FOREST(42): (setf *query* #(5.0 "?" 1.0 1.0 2.0 1.0 3.0 1.0 1.0 "benign"))
 #(5.0 "?" 1.0 1.0 2.0 1.0 3.0 1.0 1.0 "benign")
RANDOM-FOREST(43): (predict-regression-forest *query* *bc-train* *regression-forest*)
1.0172789943526082
RANDOM-FOREST(44): (setf *bc-test* (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc.test.csv")
						     :type :csv
						     :csv-type-spec 
						     (append (loop for i below 9 collect 'double-float) '(string))))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
DATA POINTS: 345 POINTS
RANDOM-FOREST(45): (regression-forest-validation *bc-test* "Cell.size" *regression-forest*)
1.6552628917521726
28.1.0.2 note

When target, the objective variable's type is string, discriminant analysis is used, when type is number, regression analysis is used. In the case of discriminant analysis, the number of self-misjudgement from self analysis is displayed.

28.2 External Symbols

28.2.1 External Functions


28.2.1.1 Function: estimator-properties
28.2.1.1.1 Syntax
(estimator-properties est &key verbose)
28.2.1.1.2 Description

28.2.1.2 Function: k-nn-analyze
28.2.1.2.1 Syntax
(k-nn-analyze learning-data k target explanatories &key (distance euclid)
              target-type use-weight weight-init normalize)
28.2.1.2.2 Description

28.2.1.3 Function: k-nn-estimate
28.2.1.3.1 Syntax
(k-nn-estimate estimator in-data)
28.2.1.3.2 Description

29 Package: clml.nearest-search.k-nn-new

  • Uses: common-lisp, hjs.util.vector, hjs.learn.read-data, hjs.util.meta, clml.nearest-search.nearest
  • Used by: None.

29.1 Description

29.1.0.1 note

When target, the objective variable's type is string, discriminant analysis is used, when type is number, regression analysis is used. In the case of discriminant analysis, the number of self-misjudgement from self analysis is displayed.

29.2 External Symbols

29.2.1 External Functions


29.2.1.1 Function: estimator-properties
29.2.1.1.1 Syntax
(estimator-properties est &key verbose)
29.2.1.1.2 Description
  • return: <list>, property list
  • arguments:
    • estimator : <k-nn-estimator>
    • verbose: nil | t, default is nil
  • comment: Get k-nn-estimator's properties. If verbose is t, all accessor of k-nn-estimator would be extracted.

29.2.1.2 Function: k-nn-analyze
29.2.1.2.1 Syntax
(k-nn-analyze learning-data k target explanatories &key (distance euclid)
              target-type use-weight weight-init normalize (nns-type naive)
              nns-args)
29.2.1.2.2 Description

&key (distance :euclid) target-type use-weight weight-init normalize)

  • return: <k-nn-estimator>
  • arguments:
    • learning-data : <unspecialized-dataset>
    • k : <integer>
    • target : <string>
    • explanatories : <list string> | :all
    • distance : :euclid | :manhattan | a function object
      • distance now can be a function object, it will be regarded as a user-specified distance function.
      • A distance function must accept 3 arguments: vector1, vector2 and profiles. profiles is a list whose elements are either :numeric or :delta,

        :numeric indicates the dimension is of numeric values and :delta indicates the dimension is of categorical values. It's totally fine to ignore profiles if users know exactly what their data is about.

    • target-type : :numeric | :category | nil
      • :numeric means regression analysis
      • :category means classification analysis
      • when nil, the target type will be automatically determined by the type of data.
    • use-weight : nil | :class | :data
    • weight-init :
      • if use-weight is :class, it's an assoc-list of form ((class-name . weight) …)
      • if use-weight is :data, then a vector of weight, a list of weight or a column name of input data are allowable. When a column name is passed in, the element in the column is treated as weight.
    • normalize : t | nil

29.2.1.3 Function: k-nn-estimate
29.2.1.3.1 Syntax
(k-nn-estimate estimator in-data)
29.2.1.3.2 Description
  • return: <unspecialized-dataset>, estimated result\ The column named

30 Package: clml.nearest-search.nearest

  • Uses: common-lisp, hjs.learn.read-data, hjs.util.vector, hjs.util.meta, clml.nonparameteric.statistics, hjs.util.matrix, clml.pca, clml.utility.priority-que
  • Used by: clml.clustering.optics-speed, clml.nearest-search.k-nn-new

30.1 Description

30.2 External Symbols

30.2.1 External Classes


30.2.1.1 Class: cosine-locality-sensitive-hashing
30.2.1.1.1 Inheritance
  • Parent classes: locality-sensitive-hashing
  • Precedence list: cosine-locality-sensitive-hashing, locality-sensitive-hashing, stochastic-nearest-search, nearest-search, standard-object, slot-object, t
  • Direct subclasses: None.
30.2.1.1.2 Description
30.2.1.1.3 Direct Slots
30.2.1.1.4 Indirect Slots
30.2.1.1.4.1 Slot: candidates
  • Value type: t
  • Initial value: (MAKE-ARRAY 0 :FILL-POINTER T :ADJUSTABLE T)
  • Initargs: none
  • Allocation: instance
30.2.1.1.4.2 Slot: hash-fns
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
30.2.1.1.4.3 Slot: hash-bit
  • Value type: t
  • Initial value: NIL
  • Initargs: k
  • Allocation: instance
30.2.1.1.4.4 Slot: hash-length
  • Value type: t
  • Initial value: NIL
  • Initargs: l
  • Allocation: instance
30.2.1.1.4.5 Internal Slot: distance
  • Value type: t
  • Initial value: #'EUCLID-DISTANCE
  • Initargs: distance
  • Allocation: instance
30.2.1.1.4.6 Slot: input-key
  • Value type: t
  • Initial value: #'IDENTITY
  • Initargs: input-key
  • Allocation: instance
30.2.1.1.4.7 Slot: input-data
  • Value type: t
  • Initial value: NIL
  • Initargs: input-data
  • Allocation: instance

30.2.1.2 Class: euclid-locality-sensitive-hashing
30.2.1.2.1 Inheritance
  • Parent classes: p-stable-locality-sensitive hashing
  • Precedence list: euclid-locality-sensitive-hashing, p-stable-locality-sensitive hashing, locality-sensitive-hashing, stochastic-nearest-search, nearest-search, standard-object, slot-object, t
  • Direct subclasses: None.
30.2.1.2.2 Description
30.2.1.2.3 Direct Slots
30.2.1.2.4 Indirect Slots
30.2.1.2.4.1 Internal Slot: w
  • Value type: t
  • Initial value: NIL
  • Initargs: w
  • Allocation: instance
30.2.1.2.4.2 Slot: candidates
  • Value type: t
  • Initial value: (MAKE-ARRAY 0 :FILL-POINTER T :ADJUSTABLE T)
  • Initargs: none
  • Allocation: instance
30.2.1.2.4.3 Slot: hash-fns
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
30.2.1.2.4.4 Slot: hash-bit
  • Value type: t
  • Initial value: NIL
  • Initargs: k
  • Allocation: instance
30.2.1.2.4.5 Slot: hash-length
  • Value type: t
  • Initial value: NIL
  • Initargs: l
  • Allocation: instance
30.2.1.2.4.6 Internal Slot: distance
  • Value type: t
  • Initial value: #'EUCLID-DISTANCE
  • Initargs: distance
  • Allocation: instance
30.2.1.2.4.7 Slot: input-key
  • Value type: t
  • Initial value: #'IDENTITY
  • Initargs: input-key
  • Allocation: instance
30.2.1.2.4.8 Slot: input-data
  • Value type: t
  • Initial value: NIL
  • Initargs: input-data
  • Allocation: instance

30.2.1.3 Class: exact-nearest-search
30.2.1.3.1 Inheritance
  • Parent classes: nearest-search
  • Precedence list: exact-nearest-search, nearest-search, standard-object, slot-object, t
  • Direct subclasses: m-tree-search, kd-tree search, naive-nearest-search
30.2.1.3.2 Description
30.2.1.3.3 Direct Slots
30.2.1.3.4 Indirect Slots
30.2.1.3.4.1 Internal Slot: distance
  • Value type: t
  • Initial value: #'EUCLID-DISTANCE
  • Initargs: distance
  • Allocation: instance
30.2.1.3.4.2 Slot: input-key
  • Value type: t
  • Initial value: #'IDENTITY
  • Initargs: input-key
  • Allocation: instance
30.2.1.3.4.3 Slot: input-data
  • Value type: t
  • Initial value: NIL
  • Initargs: input-data
  • Allocation: instance

30.2.1.4 Class: kd-tree-search
30.2.1.4.1 Inheritance
  • Parent classes: exact-nearest-search
  • Precedence list: kd-tree-search, exact nearest-search, nearest-search, standard-object, slot-object, t
  • Direct subclasses: None.
30.2.1.4.2 Description
30.2.1.4.3 Direct Slots
30.2.1.4.3.1 Slot: root-node
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
30.2.1.4.3.1.1 Accessors

30.2.1.4.3.1.1.1 Slot Accessor: root-node
30.2.1.4.3.1.1.1.1 Syntax
(root-node object)
30.2.1.4.3.1.1.1.2 Methods
  • (root-node (m-tree-search clml.nearest-search.nearest:m-tree-search))
  • (root-node (kd-tree-search clml.nearest-search.nearest:kd-tree-search))
30.2.1.4.3.2 Slot: compare-v
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
30.2.1.4.3.2.1 Accessors

30.2.1.4.3.2.1.1 Slot Accessor: compare-v
30.2.1.4.3.2.1.1.1 Syntax
(compare-v object)
30.2.1.4.3.2.1.1.2 Methods
  • (compare-v (kd-tree-search clml.nearest-search.nearest:kd-tree-search))
30.2.1.4.3.3 Slot: upper-bounds
  • Value type: t
  • Initial value: NIL
  • Initargs: upper-bounds
  • Allocation: instance
30.2.1.4.3.3.1 Accessors

30.2.1.4.3.3.1.1 Slot Accessor: upper-bounds
30.2.1.4.3.3.1.1.1 Syntax
(upper-bounds object)
30.2.1.4.3.3.1.1.2 Methods
  • (upper-bounds (kd-tree-search clml.nearest-search.nearest:kd-tree-search))
30.2.1.4.3.4 Slot: lower-bounds
  • Value type: t
  • Initial value: NIL
  • Initargs: lower-bounds
  • Allocation: instance
30.2.1.4.3.4.1 Accessors

30.2.1.4.3.4.1.1 Slot Accessor: lower-bounds
30.2.1.4.3.4.1.1.1 Syntax
(lower-bounds object)
30.2.1.4.3.4.1.1.2 Methods
  • (lower-bounds (kd-tree-search clml.nearest-search.nearest:kd-tree-search))
30.2.1.4.4 Indirect Slots
30.2.1.4.4.1 Internal Slot: distance
  • Value type: t
  • Initial value: #'EUCLID-DISTANCE
  • Initargs: distance
  • Allocation: instance
30.2.1.4.4.2 Slot: input-key
  • Value type: t
  • Initial value: #'IDENTITY
  • Initargs: input-key
  • Allocation: instance
30.2.1.4.4.3 Slot: input-data
  • Value type: t
  • Initial value: NIL
  • Initargs: input-data
  • Allocation: instance

30.2.1.5 Class: locality-sensitive-hashing
30.2.1.5.1 Inheritance
  • Parent classes: stochastic-nearest-search
  • Precedence list: locality-sensitive-hashing, stochastic-nearest-search, nearest-search, standard-object, slot-object, t
  • Direct subclasses: simhash, spectral-hashing, cosine-locality-sensitive-hashing, p-stable-locality-sensitive hashing
30.2.1.5.2 Description
30.2.1.5.3 Direct Slots
30.2.1.5.3.1 Slot: hash-length
  • Value type: t
  • Initial value: NIL
  • Initargs: l
  • Allocation: instance
30.2.1.5.3.1.1 Accessors

30.2.1.5.3.1.1.1 Slot Accessor: hash-length
30.2.1.5.3.1.1.1.1 Syntax
(hash-length object)
30.2.1.5.3.1.1.1.2 Methods
  • (hash-length (locality-sensitive-hashing clml.nearest-search.nearest:locality-sensitive hashing))
30.2.1.5.3.2 Slot: hash-bit
  • Value type: t
  • Initial value: NIL
  • Initargs: k
  • Allocation: instance
30.2.1.5.3.2.1 Accessors

30.2.1.5.3.2.1.1 Slot Accessor: hash-bit
30.2.1.5.3.2.1.1.1 Syntax
(hash-bit object)
30.2.1.5.3.2.1.1.2 Methods
  • (hash-bit (locality-sensitive-hashing clml.nearest-search.nearest:locality-sensitive hashing))
30.2.1.5.3.3 Slot: hash-fns
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
30.2.1.5.3.3.1 Accessors

30.2.1.5.3.3.1.1 Slot Accessor: hash-fns
30.2.1.5.3.3.1.1.1 Syntax
(hash-fns object)
30.2.1.5.3.3.1.1.2 Methods
  • (hash-fns (locality-sensitive-hashing clml.nearest-search.nearest:locality-sensitive hashing))
30.2.1.5.3.4 Slot: candidates
  • Value type: t
  • Initial value: (MAKE-ARRAY 0 :FILL-POINTER T :ADJUSTABLE T)
  • Initargs: none
  • Allocation: instance
30.2.1.5.3.4.1 Accessors

30.2.1.5.3.4.1.1 Slot Accessor: candidates
30.2.1.5.3.4.1.1.1 Syntax
(candidates object)
30.2.1.5.3.4.1.1.2 Methods
  • (candidates (locality-sensitive-hashing clml.nearest-search.nearest:locality-sensitive hashing))
30.2.1.5.4 Indirect Slots
30.2.1.5.4.1 Internal Slot: distance
  • Value type: t
  • Initial value: #'EUCLID-DISTANCE
  • Initargs: distance
  • Allocation: instance
30.2.1.5.4.2 Slot: input-key
  • Value type: t
  • Initial value: #'IDENTITY
  • Initargs: input-key
  • Allocation: instance
30.2.1.5.4.3 Slot: input-data
  • Value type: t
  • Initial value: NIL
  • Initargs: input-data
  • Allocation: instance

30.2.1.6 Class: m-tree-search
30.2.1.6.1 Inheritance
  • Parent classes: exact-nearest-search
  • Precedence list: m-tree-search, exact nearest-search, nearest-search, standard-object, slot-object, t
  • Direct subclasses: None.
30.2.1.6.2 Description
30.2.1.6.3 Direct Slots
30.2.1.6.3.1 Slot: root-node
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
30.2.1.6.3.1.1 Accessors

30.2.1.6.3.1.1.1 Slot Accessor: root-node
30.2.1.6.3.1.1.1.1 Syntax
(root-node object)
30.2.1.6.3.1.1.1.2 Methods
  • (root-node (m-tree-search clml.nearest-search.nearest:m-tree-search))
  • (root-node (kd-tree-search clml.nearest-search.nearest:kd-tree-search))
30.2.1.6.3.2 Internal Slot: m
  • Value type: t
  • Initial value: NIL
  • Initargs: m
  • Allocation: instance
30.2.1.6.3.2.1 Accessors

30.2.1.6.3.2.1.1 Slot Accessor: m-tree-size
30.2.1.6.3.2.1.1.1 Syntax
(m-tree-size object)
30.2.1.6.3.2.1.1.2 Methods
  • (m-tree-size (m-tree-search clml.nearest-search.nearest:m-tree-search))
30.2.1.6.3.3 Slot: pivot
  • Value type: t
  • Initial value: NIL
  • Initargs: pivot
  • Allocation: instance
30.2.1.6.3.4 Slot: priority-queue
  • Value type: t
  • Initial value: :BINOMIAL
  • Initargs: priority-queue
  • Allocation: instance
30.2.1.6.4 Indirect Slots
30.2.1.6.4.1 Internal Slot: distance
  • Value type: t
  • Initial value: #'EUCLID-DISTANCE
  • Initargs: distance
  • Allocation: instance
30.2.1.6.4.2 Slot: input-key
  • Value type: t
  • Initial value: #'IDENTITY
  • Initargs: input-key
  • Allocation: instance
30.2.1.6.4.3 Slot: input-data
  • Value type: t
  • Initial value: NIL
  • Initargs: input-data
  • Allocation: instance

30.2.1.7 Class: manhattan-locality-sensitive-hashing
30.2.1.7.1 Inheritance
  • Parent classes: p-stable-locality-sensitive hashing
  • Precedence list: manhattan-locality-sensitive hashing, p-stable-locality sensitive-hashing, locality-sensitive hashing, stochastic-nearest-search, nearest-search, standard object, slot-object, t
  • Direct subclasses: None.
30.2.1.7.2 Description
30.2.1.7.3 Direct Slots
30.2.1.7.4 Indirect Slots
30.2.1.7.4.1 Internal Slot: w
  • Value type: t
  • Initial value: NIL
  • Initargs: w
  • Allocation: instance
30.2.1.7.4.2 Slot: candidates
  • Value type: t
  • Initial value: (MAKE-ARRAY 0 :FILL-POINTER T :ADJUSTABLE T)
  • Initargs: none
  • Allocation: instance
30.2.1.7.4.3 Slot: hash-fns
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
30.2.1.7.4.4 Slot: hash-bit
  • Value type: t
  • Initial value: NIL
  • Initargs: k
  • Allocation: instance
30.2.1.7.4.5 Slot: hash-length
  • Value type: t
  • Initial value: NIL
  • Initargs: l
  • Allocation: instance
30.2.1.7.4.6 Internal Slot: distance
  • Value type: t
  • Initial value: #'EUCLID-DISTANCE
  • Initargs: distance
  • Allocation: instance
30.2.1.7.4.7 Slot: input-key
  • Value type: t
  • Initial value: #'IDENTITY
  • Initargs: input-key
  • Allocation: instance
30.2.1.7.4.8 Slot: input-data
  • Value type: t
  • Initial value: NIL
  • Initargs: input-data
  • Allocation: instance

30.2.1.8 Class: naive-nearest-search
30.2.1.8.1 Inheritance
  • Parent classes: exact-nearest-search
  • Precedence list: naive-nearest-search, exact-nearest-search, nearest-search, standard-object, slot-object, t
  • Direct subclasses: None.
30.2.1.8.2 Description
30.2.1.8.3 Direct Slots
30.2.1.8.4 Indirect Slots
30.2.1.8.4.1 Internal Slot: distance
  • Value type: t
  • Initial value: #'EUCLID-DISTANCE
  • Initargs: distance
  • Allocation: instance
30.2.1.8.4.2 Slot: input-key
  • Value type: t
  • Initial value: #'IDENTITY
  • Initargs: input-key
  • Allocation: instance
30.2.1.8.4.3 Slot: input-data
  • Value type: t
  • Initial value: NIL
  • Initargs: input-data
  • Allocation: instance

30.2.1.9 Class: nearest-search
30.2.1.9.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: nearest-search, standard object, slot-object, t
  • Direct subclasses: stochastic-nearest-search, exact-nearest-search
30.2.1.9.2 Description
30.2.1.9.3 Direct Slots
30.2.1.9.3.1 Slot: input-data
  • Value type: t
  • Initial value: NIL
  • Initargs: input-data
  • Allocation: instance
30.2.1.9.3.1.1 Accessors

30.2.1.9.3.1.1.1 Slot Accessor: nns-input-data
30.2.1.9.3.1.1.1.1 Syntax
(nns-input-data object)
30.2.1.9.3.1.1.1.2 Methods
  • (nns-input-data (nearest-search clml.nearest-search.nearest:nearest-search))
30.2.1.9.3.2 Slot: input-key
  • Value type: t
  • Initial value: #'IDENTITY
  • Initargs: input-key
  • Allocation: instance
30.2.1.9.3.2.1 Accessors

30.2.1.9.3.2.1.1 Slot Accessor: nns-input-key
30.2.1.9.3.2.1.1.1 Syntax
(nns-input-key object)
30.2.1.9.3.2.1.1.2 Methods
  • (nns-input-key (nearest-search clml.nearest-search.nearest:nearest-search))
30.2.1.9.3.3 Internal Slot: distance
  • Value type: t
  • Initial value: #'EUCLID-DISTANCE
  • Initargs: distance
  • Allocation: instance
30.2.1.9.3.3.1 Accessors

30.2.1.9.3.3.1.1 Slot Accessor: nns-distance
30.2.1.9.3.3.1.1.1 Syntax
(nns-distance object)
30.2.1.9.3.3.1.1.2 Methods
  • (nns-distance (nearest-search clml.nearest-search.nearest:nearest-search))

30.2.1.10 Class: p-stable-locality-sensitive-hashing
30.2.1.10.1 Inheritance
  • Parent classes: locality-sensitive-hashing
  • Precedence list: p-stable-locality-sensitive hashing, locality-sensitive-hashing, stochastic-nearest-search, nearest-search, standard-object, slot-object, t
  • Direct subclasses: manhattan-locality-sensitive hashing, euclid-locality-sensitive hashing
30.2.1.10.2 Description
30.2.1.10.3 Direct Slots
30.2.1.10.3.1 Internal Slot: w
  • Value type: t
  • Initial value: NIL
  • Initargs: w
  • Allocation: instance
30.2.1.10.3.1.1 Accessors

30.2.1.10.3.1.1.1 Slot Accessor: plsh-w
30.2.1.10.3.1.1.1.1 Syntax
(plsh-w object)
30.2.1.10.3.1.1.1.2 Methods
  • (plsh-w (p-stable-locality-sensitive-hashing clml.nearest-search.nearest:p-stable-locality sensitive-hashing))
30.2.1.10.4 Indirect Slots
30.2.1.10.4.1 Slot: candidates
  • Value type: t
  • Initial value: (MAKE-ARRAY 0 :FILL-POINTER T :ADJUSTABLE T)
  • Initargs: none
  • Allocation: instance
30.2.1.10.4.2 Slot: hash-fns
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
30.2.1.10.4.3 Slot: hash-bit
  • Value type: t
  • Initial value: NIL
  • Initargs: k
  • Allocation: instance
30.2.1.10.4.4 Slot: hash-length
  • Value type: t
  • Initial value: NIL
  • Initargs: l
  • Allocation: instance
30.2.1.10.4.5 Internal Slot: distance
  • Value type: t
  • Initial value: #'EUCLID-DISTANCE
  • Initargs: distance
  • Allocation: instance
30.2.1.10.4.6 Slot: input-key
  • Value type: t
  • Initial value: #'IDENTITY
  • Initargs: input-key
  • Allocation: instance
30.2.1.10.4.7 Slot: input-data
  • Value type: t
  • Initial value: NIL
  • Initargs: input-data
  • Allocation: instance

30.2.1.11 Class: stochastic-nearest-search
30.2.1.11.1 Inheritance
  • Parent classes: nearest-search
  • Precedence list: stochastic-nearest-search, nearest-search, standard-object, slot-object, t
  • Direct subclasses: locality-sensitive-hashing
30.2.1.11.2 Description
30.2.1.11.3 Direct Slots
30.2.1.11.4 Indirect Slots
30.2.1.11.4.1 Internal Slot: distance
  • Value type: t
  • Initial value: #'EUCLID-DISTANCE
  • Initargs: distance
  • Allocation: instance
30.2.1.11.4.2 Slot: input-key
  • Value type: t
  • Initial value: #'IDENTITY
  • Initargs: input-key
  • Allocation: instance
30.2.1.11.4.3 Slot: input-data
  • Value type: t
  • Initial value: NIL
  • Initargs: input-data
  • Allocation: instance

30.2.2 External Functions


30.2.2.1 Function: find-nearest
30.2.2.1.1 Syntax
(find-nearest nearest-search data)
30.2.2.1.2 Description

find a nearest point from data


30.2.2.2 Function: find-nearest-epsilon
30.2.2.2.1 Syntax
(find-nearest-epsilon nearest-search data epsilon &optional result)
30.2.2.2.2 Description

find points within distance epsilon from data


30.2.2.3 Function: find-nearest-k
30.2.2.3.1 Syntax
(find-nearest-k nearest-search data k &optional result tmp-distances)
30.2.2.3.2 Description

find nearest k points from data


30.2.2.4 Function: initialize-search
30.2.2.4.1 Syntax
(initialize-search nearest-search)
30.2.2.4.2 Description

learn or construct data structure of nearest-search


30.2.2.5 Function: nns-distance
30.2.2.5.1 Syntax
(nns-distance object)
30.2.2.5.2 Description

30.2.2.6 Function: nns-input-data
30.2.2.6.1 Syntax
(nns-input-data object)
30.2.2.6.2 Description

30.2.2.7 Function: nns-input-key
30.2.2.7.1 Syntax
(nns-input-key object)
30.2.2.7.2 Description

30.2.2.8 Function: stochastic-validation
30.2.2.8.1 Syntax
(stochastic-validation search test-dataset &optional (k) (epsilon))
30.2.2.8.2 Description

31 Package: clml.nonparameteric.statistics

  • Uses: common-lisp, hjs.util.matrix, hjs.util.vector, hjs.util.meta
  • Used by: clml.nearest-search.nearest, clml.nonparametric.lfm, clml.nonparametric.ftm, clml.nonparametric.hdp-hmm, clml.nonparametric.ihmm, clml.nonparametric.blocked-hdp-hmm, clml.nonparametric.sticky-hdp hmm, clml.nonparametric.hdp, clml.nonparametric.hdp-lda, clml.nonparametric.dpm

31.1 Description

31.2 External Symbols

31.2.1 External Constants


31.2.1.1 Inherited Constant: *most-negative-exp-able-float*
31.2.1.1.1 Value
-744.4400719213812

Type: double-float

31.2.1.1.2 Description

31.2.1.2 Inherited Constant: *most-positive-exp-able-float*
31.2.1.2.1 Value
709.782712893384

Type: double-float

31.2.1.2.2 Description

31.2.2 External Global Variables


31.2.2.1 Variable: *randomize-trace*
31.2.2.1.1 Value
NIL

Type: null

31.2.2.1.2 Description

31.2.3 External Macros


31.2.3.1 Macro: make-adarray
31.2.3.1.1 Syntax
(make-adarray dim &rest args)
31.2.3.1.2 Description

31.2.3.2 Macro: safe-exp
31.2.3.2.1 Syntax
(safe-exp x)
31.2.3.2.2 Description

31.2.3.3 Macro: safe-expt
31.2.3.3.1 Syntax
(safe-expt base power)
31.2.3.3.2 Description

31.2.4 External Functions


31.2.4.1 Function: %multivariate-normal-density
31.2.4.1.1 Syntax
(%multivariate-normal-density averages inv-sqrt-sigma dvec)
31.2.4.1.2 Description

31.2.4.2 Function: %multivariate-normal-logged-density
31.2.4.2.1 Syntax
(%multivariate-normal-logged-density averages inv-sqrt-sigma dvec)
31.2.4.2.2 Description

31.2.4.3 Function: bernoulli
31.2.4.3.1 Syntax
(bernoulli)
31.2.4.3.2 Description

31.2.4.4 Function: beta-function
31.2.4.4.1 Syntax
(beta-function)
31.2.4.4.2 Description

31.2.4.5 Function: beta-random
31.2.4.5.1 Syntax
(beta-random)
31.2.4.5.2 Description

31.2.4.6 Function: binomial-random
31.2.4.6.1 Syntax
(binomial-random)
31.2.4.6.2 Description

31.2.4.7 Function: cauchy-random
31.2.4.7.1 Syntax
(cauchy-random)
31.2.4.7.2 Description

31.2.4.8 Function: chi-square-random
31.2.4.8.1 Syntax
(chi-square-random k)
31.2.4.8.2 Description

31.2.4.9 Function: cholesky-decomp
31.2.4.9.1 Syntax
(cholesky-decomp mat &optional
                 (result
                  (make-array (array-dimensions mat) element-type 'double-float
                              initial-element 0.0)
                  result-passed-p))
31.2.4.9.2 Description

31.2.4.10 Function: crossproduct
31.2.4.10.1 Syntax
(crossproduct mat &optional result)
31.2.4.10.2 Description

31.2.4.11 Function: digamma
31.2.4.11.1 Syntax
(digamma)
31.2.4.11.2 Description

31.2.4.12 Function: dirichlet-random
31.2.4.12.1 Syntax
(dirichlet-random)
31.2.4.12.2 Description

31.2.4.13 Function: exp-random
31.2.4.13.1 Syntax
(exp-random)
31.2.4.13.2 Description

31.2.4.14 Function: gamma-function
31.2.4.14.1 Syntax
(gamma-function x)
31.2.4.14.2 Description

31.2.4.15 Function: gamma-random
31.2.4.15.1 Syntax
(gamma-random)
31.2.4.15.2 Description

31.2.4.16 Function: get-n-best
31.2.4.16.1 Syntax
(get-n-best row n)
31.2.4.16.2 Description

31.2.4.17 Function: jackup-logged-prob
31.2.4.17.1 Syntax
(jackup-logged-prob)
31.2.4.17.2 Description

31.2.4.18 Function: loggamma
31.2.4.18.1 Syntax
(loggamma)
31.2.4.18.2 Description

31.2.4.19 Function: lued-wishart-random
31.2.4.19.1 Syntax
(lued-wishart-random df dim)
31.2.4.19.2 Description

31.2.4.20 Function: map-matrix-cell
31.2.4.20.1 Syntax
(map-matrix-cell fn dmat)
31.2.4.20.2 Description

31.2.4.21 Function: map-matrix-cell!
31.2.4.21.1 Syntax
(map-matrix-cell! fn dmat)
31.2.4.21.2 Description

31.2.4.22 Function: multivariate-normal-density
31.2.4.22.1 Syntax
(multivariate-normal-density averages sqrt-sigma dvec)
31.2.4.22.2 Description

31.2.4.23 Function: multivariate-normal-logged-density
31.2.4.23.1 Syntax
(multivariate-normal-logged-density averages sqrt-sigma dvec)
31.2.4.23.2 Description

31.2.4.24 Function: multivariate-normal-random
31.2.4.24.1 Syntax
(multivariate-normal-random averages sqrt-sigma &optional result)
31.2.4.24.2 Description

31.2.4.25 Function: normal-density
31.2.4.25.1 Syntax
(normal-density)
31.2.4.25.2 Description

31.2.4.26 Internal Function: normal-random
31.2.4.26.1 Syntax
(normal-random)
31.2.4.26.2 Description

31.2.4.27 Function: normalize!
31.2.4.27.1 Syntax
(normalize! vector)
31.2.4.27.2 Description

31.2.4.28 Function: outer-product
31.2.4.28.1 Syntax
(outer-product x y)
31.2.4.28.2 Description

31.2.4.29 Function: random-elt
31.2.4.29.1 Syntax
(random-elt array)
31.2.4.29.2 Description

31.2.4.30 Function: randomize-choice
31.2.4.30.1 Syntax
(randomize-choice)
31.2.4.30.2 Description

31.2.4.31 Function: randomize-slice
31.2.4.31.1 Syntax
(randomize-slice)
31.2.4.31.2 Description

31.2.4.32 Function: shuffle-vector
31.2.4.32.1 Syntax
(shuffle-vector v)
31.2.4.32.2 Description

Return vector with elements shuffled


31.2.4.33 Function: stirling-number
31.2.4.33.1 Syntax
(stirling-number n m)
31.2.4.33.2 Description

31.2.4.34 Function: trigamma
31.2.4.34.1 Syntax
(trigamma)
31.2.4.34.2 Description

31.2.4.35 Function: unit-random
31.2.4.35.1 Syntax
(unit-random)
31.2.4.35.2 Description

A random number in the range (0, 1].

32 Package: clml.nonparametric.dpm

  • Uses: common-lisp, hjs.util.meta, hjs.util.matrix, hjs.util.vector, clml.nonparameteric.statistics
  • Used by: clml.nonparametric.lfm, clml.nonparametric.ftm, clml.nonparametric.hdp-hmm, clml.nonparametric.ihmm, clml.nonparametric.blocked-hdp-hmm, clml.nonparametric.sticky-hdp hmm, clml.nonparametric.hdp

32.1 Description

32.2 External Symbols

32.2.1 External Classes


32.2.1.1 Inherited Class: cluster
32.2.1.1.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: cluster, standard-object, slot-object, t
  • Direct subclasses: ftm-topic, hdp-cluster, gaussian-cluster
32.2.1.1.2 Description
32.2.1.1.3 Direct Slots
32.2.1.1.3.1 Slot: num
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance
32.2.1.1.3.1.1 Accessors

32.2.1.1.3.1.1.1 Slot Accessor: cluster-size
32.2.1.1.3.1.1.1.1 Syntax
(cluster-size object)
32.2.1.1.3.1.1.1.2 Methods
  • (cluster-size (cluster clml.nonparametric.dpm:cluster))

32.2.1.2 Class: dp-distribution
32.2.1.2.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: dp-distribution, standard object, slot-object, t
  • Direct subclasses: ftm-uniform, hdp distribution, dp-gaussian
32.2.1.2.2 Description
32.2.1.2.3 Direct Slots
32.2.1.2.3.1 Slot: cluster-class
  • Value type: t
  • Initial value: ='CLML.NONPARAMETRIC.DPM:CLUSTER=
  • Initargs: none
  • Allocation: instance
32.2.1.2.3.1.1 Accessors

32.2.1.2.3.1.1.1 Slot Accessor: cluster-class
32.2.1.2.3.1.1.1.1 Syntax
(cluster-class object)
32.2.1.2.3.1.1.1.2 Methods
  • (cluster-class (dp-distribution clml.nonparametric.dpm:dp-distribution))

32.2.1.3 Class: dp-gaussian
32.2.1.3.1 Inheritance
  • Parent classes: dp-distribution
  • Precedence list: dp-gaussian, dp-distribution, standard-object, slot-object, t
  • Direct subclasses: state-gaussian, multivar-dp-gaussian
32.2.1.3.2 Description
32.2.1.3.3 Direct Slots
32.2.1.3.3.1 Slot: cluster-class
  • Value type: t
  • Initial value: ='CLML.NONPARAMETRIC.DPM:GAUSSIAN-CLUSTER=
  • Initargs: none
  • Allocation: instance
32.2.1.3.3.2 Slot: ave
  • Value type: t
  • Initial value: 0.0
  • Initargs: ave
  • Allocation: instance
32.2.1.3.3.2.1 Accessors

32.2.1.3.3.2.1.1 Slot Accessor: average-of-average
32.2.1.3.3.2.1.1.1 Syntax
(average-of-average object)
32.2.1.3.3.2.1.1.2 Methods
  • (average-of-average (dp-gaussian clml.nonparametric.dpm:dp-gaussian))
32.2.1.3.3.3 Internal Slot: std
  • Value type: t
  • Initial value: 1.0
  • Initargs: std
  • Allocation: instance
32.2.1.3.3.3.1 Accessors

32.2.1.3.3.3.1.1 Slot Accessor: std-of-average
32.2.1.3.3.3.1.1.1 Syntax
(std-of-average object)
32.2.1.3.3.3.1.1.2 Methods
  • (std-of-average (dp-gaussian clml.nonparametric.dpm:dp-gaussian))

32.2.1.4 Class: dpm
32.2.1.4.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: dpm, standard-object, slot-object, t
  • Direct subclasses: ftm, hdp, gauss-dpm, logged-dpm
32.2.1.4.2 Description
32.2.1.4.3 Direct Slots
32.2.1.4.3.1 Slot: dpm-k
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance
32.2.1.4.3.1.1 Accessors

32.2.1.4.3.1.1.1 Slot Accessor: dpm-k
32.2.1.4.3.1.1.1.1 Syntax
(dpm-k object)
32.2.1.4.3.1.1.1.2 Methods
  • (dpm-k (dpm clml.nonparametric.dpm:dpm))
32.2.1.4.3.2 Slot: base-distribution
  • Value type: t
  • Initial value: NIL
  • Initargs: base-distribution
  • Allocation: instance
32.2.1.4.3.2.1 Accessors

32.2.1.4.3.2.1.1 Slot Accessor: dpm-base
32.2.1.4.3.2.1.1.1 Syntax
(dpm-base object)
32.2.1.4.3.2.1.1.2 Methods
  • (dpm-base (dpm clml.nonparametric.dpm:dpm))
32.2.1.4.3.3 Slot: clusteres
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 0)
  • Initargs: none
  • Allocation: instance
32.2.1.4.3.3.1 Accessors

32.2.1.4.3.3.1.1 Slot Accessor: dpm-clusters
32.2.1.4.3.3.1.1.1 Syntax
(dpm-clusters object)
32.2.1.4.3.3.1.1.2 Methods
  • (dpm-clusters (dpm clml.nonparametric.dpm:dpm))
32.2.1.4.3.4 Slot: layers
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 1 :ELEMENT-TYPE 'FIXNUM

    :INITIAL-ELEMENT 0)=

  • Initargs: none
  • Allocation: instance
32.2.1.4.3.4.1 Accessors

32.2.1.4.3.4.1.1 Slot Accessor: dpm-cluster-layers
32.2.1.4.3.4.1.1.1 Syntax
(dpm-cluster-layers object)
32.2.1.4.3.4.1.1.2 Methods
  • (dpm-cluster-layers (dpm clml.nonparametric.dpm:dpm))
32.2.1.4.3.5 Slot: dpm-hyper
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:GAMMA-RANDOM CLML.NONPARAMETRIC.DPM:*HYPER-BASE-A* CLML.NONPARAMETRIC.DPM:*HYPER-BASE-B*)=
  • Initargs: none
  • Allocation: instance
32.2.1.4.3.5.1 Accessors

32.2.1.4.3.5.1.1 Slot Accessor: dpm-hyper
32.2.1.4.3.5.1.1.1 Syntax
(dpm-hyper object)
32.2.1.4.3.5.1.1.2 Methods
  • (dpm-hyper (dpm clml.nonparametric.dpm:dpm))
32.2.1.4.3.6 Internal Slot: p
  • Value type: t
  • Initial value: (MAKE-ARRAY 0 :FILL-POINTER T :ADJUSTABLE T :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
32.2.1.4.3.6.1 Accessors

32.2.1.4.3.6.1.1 Slot Accessor: dpm-p
32.2.1.4.3.6.1.1.1 Syntax
(dpm-p object)
32.2.1.4.3.6.1.1.2 Methods
  • (dpm-p (dpm clml.nonparametric.dpm:dpm))
32.2.1.4.3.7 Slot: estimate-base?
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
32.2.1.4.3.7.1 Accessors

32.2.1.4.3.7.1.1 Slot Accessor: estimate-base?
32.2.1.4.3.7.1.1.1 Syntax
(estimate-base? object)
32.2.1.4.3.7.1.1.2 Methods
  • (estimate-base? (dpm clml.nonparametric.dpm:dpm))
32.2.1.4.3.8 Internal Slot: data
  • Value type: t
  • Initial value: NIL
  • Initargs: data
  • Allocation: instance
32.2.1.4.3.8.1 Accessors

32.2.1.4.3.8.1.1 Slot Accessor: dpm-data
32.2.1.4.3.8.1.1.1 Syntax
(dpm-data object)
32.2.1.4.3.8.1.1.2 Methods
  • (dpm-data (dpm clml.nonparametric.dpm:dpm))

32.2.1.5 Class: gauss-dpm
32.2.1.5.1 Inheritance
  • Parent classes: dpm
  • Precedence list: gauss-dpm, dpm, standard-object, slot-object, t
  • Direct subclasses: gauss-hdp-hmm, multivar gauss-dpm
32.2.1.5.2 Description
32.2.1.5.3 Direct Slots
32.2.1.5.3.1 Slot: base-distribution
  • Value type: t
  • Initial value: (MAKE-INSTANCE 'CLML.NONPARAMETRIC.DPM:DP-GAUSSIAN)
  • Initargs: none
  • Allocation: instance
32.2.1.5.4 Indirect Slots
32.2.1.5.4.1 Internal Slot: data
  • Value type: t
  • Initial value: NIL
  • Initargs: data
  • Allocation: instance
32.2.1.5.4.2 Slot: estimate-base?
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
32.2.1.5.4.3 Internal Slot: p
  • Value type: t
  • Initial value: (MAKE-ARRAY 0 :FILL-POINTER T :ADJUSTABLE T :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
32.2.1.5.4.4 Slot: dpm-hyper
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:GAMMA-RANDOM CLML.NONPARAMETRIC.DPM:*HYPER-BASE-A* CLML.NONPARAMETRIC.DPM:*HYPER-BASE-B*)=
  • Initargs: none
  • Allocation: instance
32.2.1.5.4.5 Slot: layers
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 1 :ELEMENT-TYPE 'FIXNUM

    :INITIAL-ELEMENT 0)=

  • Initargs: none
  • Allocation: instance
32.2.1.5.4.6 Slot: clusteres
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 0)
  • Initargs: none
  • Allocation: instance
32.2.1.5.4.7 Slot: dpm-k
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance

32.2.1.6 Class: gaussian-cluster
32.2.1.6.1 Inheritance
  • Parent classes: cluster
  • Precedence list: gaussian-cluster, cluster, standard-object, slot-object, t
  • Direct subclasses: gaussian-state, multivar-gaussian-cluster
32.2.1.6.2 Description
32.2.1.6.3 Direct Slots
32.2.1.6.3.1 Internal Slot: center
  • Value type: t
  • Initial value: 0.0
  • Initargs: center
  • Allocation: instance
32.2.1.6.3.1.1 Accessors

32.2.1.6.3.1.1.1 Slot Accessor: cluster-center
32.2.1.6.3.1.1.1.1 Syntax
(cluster-center object)
32.2.1.6.3.1.1.1.2 Methods
  • (cluster-center (gaussian-cluster clml.nonparametric.dpm:gaussian-cluster))
32.2.1.6.3.2 Internal Slot: std
  • Value type: t
  • Initial value: 1.0
  • Initargs: std
  • Allocation: instance
32.2.1.6.3.2.1 Accessors

32.2.1.6.3.2.1.1 Slot Accessor: cluster-std
32.2.1.6.3.2.1.1.1 Syntax
(cluster-std object)
32.2.1.6.3.2.1.1.2 Methods
  • (cluster-std (gaussian-cluster clml.nonparametric.dpm:gaussian-cluster))
32.2.1.6.3.3 Slot: acc
  • Value type: t
  • Initial value: 0.0
  • Initargs: none
  • Allocation: instance
32.2.1.6.3.3.1 Accessors

32.2.1.6.3.3.1.1 Slot Accessor: cluster-acc
32.2.1.6.3.3.1.1.1 Syntax
(cluster-acc object)
32.2.1.6.3.3.1.1.2 Methods
  • (cluster-acc (gaussian-cluster clml.nonparametric.dpm:gaussian-cluster))
32.2.1.6.3.4 Slot: points
  • Value type: t
  • Initial value: (MAKE-ARRAY 0 :FILL-POINTER T :ADJUSTABLE T :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
32.2.1.6.3.4.1 Accessors

32.2.1.6.3.4.1.1 Slot Accessor: cluster-points
32.2.1.6.3.4.1.1.1 Syntax
(cluster-points object)
32.2.1.6.3.4.1.1.2 Methods
  • (cluster-points (gaussian-cluster clml.nonparametric.dpm:gaussian-cluster))
32.2.1.6.4 Indirect Slots
32.2.1.6.4.1 Slot: num
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance

32.2.1.7 Class: logged-dpm
32.2.1.7.1 Inheritance
  • Parent classes: dpm
  • Precedence list: logged-dpm, dpm, standard-object, slot-object, t
  • Direct subclasses: multivar-gauss-dpm
32.2.1.7.2 Description
32.2.1.7.3 Direct Slots
32.2.1.7.4 Indirect Slots
32.2.1.7.4.1 Internal Slot: data
  • Value type: t
  • Initial value: NIL
  • Initargs: data
  • Allocation: instance
32.2.1.7.4.2 Slot: estimate-base?
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
32.2.1.7.4.3 Internal Slot: p
  • Value type: t
  • Initial value: (MAKE-ARRAY 0 :FILL-POINTER T :ADJUSTABLE T :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
32.2.1.7.4.4 Slot: dpm-hyper
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:GAMMA-RANDOM CLML.NONPARAMETRIC.DPM:*HYPER-BASE-A* CLML.NONPARAMETRIC.DPM:*HYPER-BASE-B*)=
  • Initargs: none
  • Allocation: instance
32.2.1.7.4.5 Slot: layers
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 1 :ELEMENT-TYPE 'FIXNUM

    :INITIAL-ELEMENT 0)=

  • Initargs: none
  • Allocation: instance
32.2.1.7.4.6 Slot: clusteres
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 0)
  • Initargs: none
  • Allocation: instance
32.2.1.7.4.7 Slot: base-distribution
  • Value type: t
  • Initial value: NIL
  • Initargs: base-distribution
  • Allocation: instance
32.2.1.7.4.8 Slot: dpm-k
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance

32.2.1.8 Class: multivar-dp-gaussian
32.2.1.8.1 Inheritance
  • Parent classes: dp-gaussian
  • Precedence list: multivar-dp-gaussian, dp gaussian, dp-distribution, standard-object, slot-object, t
  • Direct subclasses: None.
32.2.1.8.2 Description
  • accessor:
    • average-of-average : (SIMPLE-ARRAY DOUBLE-FLOAT (* )), average of centroids
    • std-of-average : (SIMPLE-ARRAY DOUBLE-FLOAT (* * )), covariance matrix of centroids
    • average-of-std : (SIMPLE-ARRAY DOUBLE-FLOAT (* * )), average of covariance matrix
32.2.1.8.3 Direct Slots
32.2.1.8.3.1 Internal Slot: dimension
  • Value type: t
  • Initial value: 2
  • Initargs: dim
  • Allocation: instance
32.2.1.8.3.1.1 Accessors

32.2.1.8.3.1.1.1 Slot Accessor: dist-dim
32.2.1.8.3.1.1.1.1 Syntax
(dist-dim object)
32.2.1.8.3.1.1.1.2 Methods
  • (dist-dim (multivar-dp-gaussian clml.nonparametric.dpm:multivar-dp-gaussian))
32.2.1.8.3.2 Slot: ave-of-std
  • Value type: t
  • Initial value: NIL
  • Initargs: aos
  • Allocation: instance
32.2.1.8.3.2.1 Accessors

32.2.1.8.3.2.1.1 Slot Accessor: average-of-std
32.2.1.8.3.2.1.1.1 Syntax
(average-of-std object)
32.2.1.8.3.2.1.1.2 Methods
  • (average-of-std (multivar-dp-gaussian clml.nonparametric.dpm:multivar-dp-gaussian))
32.2.1.8.4 Indirect Slots
32.2.1.8.4.1 Internal Slot: std
  • Value type: t
  • Initial value: 1.0
  • Initargs: std
  • Allocation: instance
32.2.1.8.4.2 Slot: ave
  • Value type: t
  • Initial value: 0.0
  • Initargs: ave
  • Allocation: instance
32.2.1.8.4.3 Slot: cluster-class
  • Value type: t
  • Initial value: ='CLML.NONPARAMETRIC.DPM:GAUSSIAN-CLUSTER=
  • Initargs: none
  • Allocation: instance

32.2.1.9 Class: multivar-gauss-dpm
32.2.1.9.1 Inheritance
  • Parent classes: logged-dpm, gauss-dpm
  • Precedence list: multivar-gauss-dpm, logged dpm, gauss-dpm, dpm, standard-object, slot-object, t
  • Direct subclasses: None.
32.2.1.9.2 Description
  • accessor:
    • dpm-k : number of clusters
    • dpm-hyper: hyperparameter of DPM clustering. This value represents the tendency of making new cluster.
    • dpm-base : <multivar-dp-gaussian>, prior distribution
32.2.1.9.3 Direct Slots
32.2.1.9.3.1 Internal Slot: dimension
  • Value type: t
  • Initial value: 2
  • Initargs: dim
  • Allocation: instance
32.2.1.9.3.1.1 Accessors

32.2.1.9.3.1.1.1 Slot Accessor: dpm-dim
32.2.1.9.3.1.1.1.1 Syntax
(dpm-dim object)
32.2.1.9.3.1.1.1.2 Methods
  • (dpm-dim (multivar-gauss-dpm clml.nonparametric.dpm:multivar-gauss-dpm))
32.2.1.9.4 Indirect Slots
32.2.1.9.4.1 Internal Slot: data
  • Value type: t
  • Initial value: NIL
  • Initargs: data
  • Allocation: instance
32.2.1.9.4.2 Slot: estimate-base?
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
32.2.1.9.4.3 Internal Slot: p
  • Value type: t
  • Initial value: (MAKE-ARRAY 0 :FILL-POINTER T :ADJUSTABLE T :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
32.2.1.9.4.4 Slot: dpm-hyper
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:GAMMA-RANDOM CLML.NONPARAMETRIC.DPM:*HYPER-BASE-A* CLML.NONPARAMETRIC.DPM:*HYPER-BASE-B*)=
  • Initargs: none
  • Allocation: instance
32.2.1.9.4.5 Slot: layers
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 1 :ELEMENT-TYPE 'FIXNUM

    :INITIAL-ELEMENT 0)=

  • Initargs: none
  • Allocation: instance
32.2.1.9.4.6 Slot: clusteres
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 0)
  • Initargs: none
  • Allocation: instance
32.2.1.9.4.7 Slot: base-distribution
  • Value type: t
  • Initial value: (MAKE-INSTANCE 'CLML.NONPARAMETRIC.DPM:DP-GAUSSIAN)
  • Initargs: base-distribution
  • Allocation: instance
32.2.1.9.4.8 Slot: dpm-k
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance

32.2.1.10 Class: multivar-gaussian-cluster
32.2.1.10.1 Inheritance
  • Parent classes: gaussian-cluster
  • Precedence list: multivar-gaussian-cluster, gaussian-cluster, cluster, standard-object, slot-object, t
  • Direct subclasses: None.
32.2.1.10.2 Description
32.2.1.10.3 Direct Slots
32.2.1.10.3.1 Slot: points
  • Value type: t
  • Initial value: =(MAKE-ARRAY 0 :ELEMENT-TYPE 'HJS.UTIL.META:DVEC :FILL-POINTER T

    :ADJUSTABLE T)=

  • Initargs: none
  • Allocation: instance
32.2.1.10.3.2 Slot: acc
  • Value type: t
  • Initial value: NIL
  • Initargs: acc
  • Allocation: instance
32.2.1.10.4 Indirect Slots
32.2.1.10.4.1 Internal Slot: std
  • Value type: t
  • Initial value: 1.0
  • Initargs: std
  • Allocation: instance
32.2.1.10.4.2 Internal Slot: center
  • Value type: t
  • Initial value: 0.0
  • Initargs: center
  • Allocation: instance
32.2.1.10.4.3 Slot: num
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance

32.2.1.11 Inherited Class: point
32.2.1.11.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: point, standard-object, slot-object, t
  • Direct subclasses: seq-point
32.2.1.11.2 Description
32.2.1.11.3 Direct Slots
32.2.1.11.3.1 Internal Slot: data
  • Value type: t
  • Initial value: NIL
  • Initargs: data
  • Allocation: instance
32.2.1.11.3.1.1 Accessors

32.2.1.11.3.1.1.1 Slot Accessor: point-data
32.2.1.11.3.1.1.1.1 Syntax
(point-data object)
32.2.1.11.3.1.1.1.2 Methods
  • (point-data (point clml.nonparametric.dpm:point))
32.2.1.11.3.2 Inherited Slot: cluster
  • Value type: t
  • Initial value: NIL
  • Initargs: cluster
  • Allocation: instance
32.2.1.11.3.2.1 Accessors

32.2.1.11.3.2.1.1 Slot Accessor: point-cluster
32.2.1.11.3.2.1.1.1 Syntax
(point-cluster object)
32.2.1.11.3.2.1.1.2 Methods
  • (point-cluster (point clml.nonparametric.dpm:point))

32.2.2 External Global Variables


32.2.2.1 Variable: *hyper-base-a*
32.2.2.1.1 Value
1.0

Type: double-float

32.2.2.1.2 Description

32.2.2.2 Variable: *hyper-base-b*
32.2.2.2.1 Value
1.0

Type: double-float

32.2.2.2.2 Description

32.2.3 External Functions


32.2.3.1 Inherited Function: add-customer
32.2.3.1.1 Syntax
(add-customer dpm customer old &rest args &key franchise &allow-other-keys)
32.2.3.1.2 Description

add data to model randomly


32.2.3.2 Function: add-to-cluster
32.2.3.2.1 Syntax
(add-to-cluster cluster data &rest args &key franchise franchise
                &allow-other-keys)
32.2.3.2.2 Description

add data to cluster


32.2.3.3 Function: average-of-average
32.2.3.3.1 Syntax
(average-of-average object)
32.2.3.3.2 Description

32.2.3.4 Function: base-distribution
32.2.3.4.1 Syntax
(base-distribution dpm distribution data &rest args &key franchise x eystar
                   eydagger vystar vydagger &allow-other-keys)
32.2.3.4.2 Description

prior of fresh cluster of data in distribution


32.2.3.5 Function: cluster-center
32.2.3.5.1 Syntax
(cluster-center object)
32.2.3.5.2 Description

32.2.3.6 Function: cluster-class
32.2.3.6.1 Syntax
(cluster-class object)
32.2.3.6.2 Description

32.2.3.7 Function: cluster-rotation
32.2.3.7.1 Syntax
(cluster-rotation ref clusters layers old-size)
32.2.3.7.2 Description

32.2.3.8 Function: cluster-size
32.2.3.8.1 Syntax
(cluster-size object)
32.2.3.8.2 Description

32.2.3.9 Function: cluster-std
32.2.3.9.1 Syntax
(cluster-std object)
32.2.3.9.2 Description

32.2.3.10 Function: density-to-cluster
32.2.3.10.1 Syntax
(density-to-cluster dpm cluster data &rest other-data &key ans before-sorted
                    slice before vy ey x franchise &allow-other-keys)
32.2.3.10.2 Description

density of data to cluster


32.2.3.11 Function: dpm-base
32.2.3.11.1 Syntax
(dpm-base object)
32.2.3.11.2 Description

32.2.3.12 Function: dpm-cluster-layers
32.2.3.12.1 Syntax
(dpm-cluster-layers object)
32.2.3.12.2 Description

32.2.3.13 Function: dpm-clusters
32.2.3.13.1 Syntax
(dpm-clusters object)
32.2.3.13.2 Description

32.2.3.14 Function: dpm-data
32.2.3.14.1 Syntax
(dpm-data object)
32.2.3.14.2 Description

32.2.3.15 Function: dpm-hyper
32.2.3.15.1 Syntax
(dpm-hyper object)
32.2.3.15.2 Description

32.2.3.16 Function: dpm-k
32.2.3.16.1 Syntax
(dpm-k object)
32.2.3.16.2 Description

32.2.3.17 Function: dpm-p
32.2.3.17.1 Syntax
(dpm-p object)
32.2.3.17.2 Description

32.2.3.18 Function: estimate-base?
32.2.3.18.1 Syntax
(estimate-base? object)
32.2.3.18.2 Description

32.2.3.19 Function: head-clusters
32.2.3.19.1 Syntax
(head-clusters dpm &optional (n most-positive-fixnum))
32.2.3.19.2 Description

32.2.3.20 Inherited Function: hypers-sampling
32.2.3.20.1 Syntax
(hypers-sampling dpm)
32.2.3.20.2 Description

hyperparameter sampling


32.2.3.21 Inherited Function: initialize
32.2.3.21.1 Syntax
(initialize dpm)
32.2.3.21.2 Description

initialize dpm slots and first seating sampling


32.2.3.22 Function: make-cluster-result
32.2.3.22.1 Syntax
(make-cluster-result dpm)
32.2.3.22.2 Description

32.2.3.23 Function: make-new-cluster
32.2.3.23.1 Syntax
(make-new-cluster dpm distribution data &optional discarded-cluster)
32.2.3.23.2 Description

make new cluster of passed distribution


32.2.3.24 Function: make-point
32.2.3.24.1 Syntax
(make-point &key data cluster)
32.2.3.24.2 Description

32.2.3.25 Function: parameters-sampling
32.2.3.25.1 Syntax
(parameters-sampling dpm)
32.2.3.25.2 Description

sampling without seatings but other parameters


32.2.3.26 Function: point-cluster
32.2.3.26.1 Syntax
(point-cluster object)
32.2.3.26.2 Description

32.2.3.27 Function: point-data
32.2.3.27.1 Syntax
(point-data object)
32.2.3.27.2 Description

32.2.3.28 Inherited Function: remove-customer
32.2.3.28.1 Syntax
(remove-customer dpm customer &rest args &key franchise &allow-other-keys)
32.2.3.28.2 Description

remove data from model


32.2.3.29 Function: remove-from-cluster
32.2.3.29.1 Syntax
(remove-from-cluster cluster data &rest args &key franchise &allow-other-keys)
32.2.3.29.2 Description

remove data from cluster


32.2.3.30 Function: sample-cluster-parameters
32.2.3.30.1 Syntax
(sample-cluster-parameters cluster dist dpm)
32.2.3.30.2 Description

update cluster parameters if exists


32.2.3.31 Function: sample-distribution
32.2.3.31.1 Syntax
(sample-distribution dpm distribution)
32.2.3.31.2 Description

update distribution parameters if exists


32.2.3.32 Inherited Function: sampling
32.2.3.32.1 Syntax
(sampling dpm)
32.2.3.32.2 Description

samlpling seatings and other parameters


32.2.3.33 Function: seatings-sampling
32.2.3.33.1 Syntax
(seatings-sampling dpm)
32.2.3.33.2 Description

32.2.3.34 Function: std-of-average
32.2.3.34.1 Syntax
(std-of-average object)
32.2.3.34.2 Description

32.3 Ambiguous Symbols

32.3.1 Dpm

Disambiguation.

  • Class: clml.nonparametric.dpm:dpm
  • Package: clml.nonparametric.dpm:dpm

33 Package: clml.nonparametric.ftm

  • Uses: common-lisp, clml.nonparameteric.statistics, clml.nonparametric.dpm
  • Used by: None.

33.1 Description

33.2 External Symbols

33.2.1 External Classes


33.2.1.1 Inherited Class: document
33.2.1.1.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: document, standard-object, slot-object, t
  • Direct subclasses: None.
33.2.1.1.2 Description
33.2.1.1.3 Direct Slots
33.2.1.1.3.1 Inherited Slot: id
  • Value type: t
  • Initial value: NIL
  • Initargs: id
  • Allocation: instance
33.2.1.1.3.1.1 Accessors

33.2.1.1.3.1.1.1 Inherited Slot Accessor: document-id
33.2.1.1.3.1.1.1.1 Syntax
(document-id object)
33.2.1.1.3.1.1.1.2 Methods
  • (document-id (document clml.nonparametric.ftm:document))
33.2.1.1.3.2 Internal Slot: words
  • Value type: t
  • Initial value: NIL
  • Initargs: words
  • Allocation: instance
33.2.1.1.3.2.1 Accessors

33.2.1.1.3.2.1.1 Inherited Slot Accessor: document-words
33.2.1.1.3.2.1.1.1 Syntax
(document-words object)
33.2.1.1.3.2.1.1.2 Methods
  • (document-words (document clml.nonparametric.ftm:document))
33.2.1.1.3.3 Internal Slot: thetas
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
33.2.1.1.3.3.1 Accessors

33.2.1.1.3.3.1.1 Inherited Slot Accessor: document-thetas
33.2.1.1.3.3.1.1.1 Syntax
(document-thetas object)
33.2.1.1.3.3.1.1.2 Methods
  • (document-thetas (document clml.nonparametric.ftm:document))

33.2.1.2 Class: ftm
33.2.1.2.1 Inheritance
  • Parent classes: dpm
  • Precedence list: ftm, dpm, standard object, slot-object, t
  • Direct subclasses: None.
33.2.1.2.2 Description
33.2.1.2.3 Direct Slots
33.2.1.2.3.1 Slot: dpm-k
  • Value type: t
  • Initial value: 1
  • Initargs: init-k
  • Allocation: instance
33.2.1.2.3.2 Slot: dpm-hyper
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:GAMMA-RANDOM 2.0 10.0)
  • Initargs: none
  • Allocation: instance
33.2.1.2.3.3 Slot: base-distribution
  • Value type: t
  • Initial value: (MAKE-INSTANCE 'CLML.NONPARAMETRIC.FTM:FTM-UNIFORM)
  • Initargs: none
  • Allocation: instance
33.2.1.2.3.4 Slot: word-table
  • Value type: t
  • Initial value: (MAKE-HASH-TABLE :TEST #'EQUAL)
  • Initargs: none
  • Allocation: instance
33.2.1.2.3.4.1 Accessors

33.2.1.2.3.4.1.1 Slot Accessor: word-table
33.2.1.2.3.4.1.1.1 Syntax
(word-table object)
33.2.1.2.3.4.1.1.2 Methods
  • (word-table (ftm clml.nonparametric.ftm:ftm))
33.2.1.2.3.5 Slot: revert-table
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
33.2.1.2.3.5.1 Accessors

33.2.1.2.3.5.1.1 Slot Accessor: revert-table
33.2.1.2.3.5.1.1.1 Syntax
(revert-table object)
33.2.1.2.3.5.1.1.2 Methods
  • (revert-table (ftm clml.nonparametric.ftm:ftm))
33.2.1.2.3.6 Inherited Slot: id
  • Value type: t
  • Initial value: -1
  • Initargs: none
  • Allocation: instance
33.2.1.2.3.6.1 Accessors

33.2.1.2.3.6.1.1 Inherited Slot Accessor: vocabulary
33.2.1.2.3.6.1.1.1 Syntax
(vocabulary object)
33.2.1.2.3.6.1.1.2 Methods
  • (vocabulary (ftm clml.nonparametric.ftm:ftm))
33.2.1.2.3.7 Slot: ftm-hyper
  • Value type: t
  • Initial value: 5.0
  • Initargs: none
  • Allocation: instance
33.2.1.2.3.7.1 Accessors

33.2.1.2.3.7.1.1 Slot Accessor: ftm-ibp-alpha
33.2.1.2.3.7.1.1.1 Syntax
(ftm-ibp-alpha object)
33.2.1.2.3.7.1.1.2 Methods
  • (ftm-ibp-alpha (ftm clml.nonparametric.ftm:ftm))
33.2.1.2.4 Indirect Slots
33.2.1.2.4.1 Internal Slot: data
  • Value type: t
  • Initial value: NIL
  • Initargs: data
  • Allocation: instance
33.2.1.2.4.2 Slot: estimate-base?
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
33.2.1.2.4.3 Internal Slot: p
  • Value type: t
  • Initial value: (MAKE-ARRAY 0 :FILL-POINTER T :ADJUSTABLE T :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
33.2.1.2.4.4 Slot: layers
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 1 :ELEMENT-TYPE 'FIXNUM

    :INITIAL-ELEMENT 0)=

  • Initargs: none
  • Allocation: instance
33.2.1.2.4.5 Slot: clusteres
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 0)
  • Initargs: none
  • Allocation: instance

33.2.1.3 Class: ftm-topic
33.2.1.3.1 Inheritance
  • Parent classes: cluster
  • Precedence list: ftm-topic, cluster, standard-object, slot-object, t
  • Direct subclasses: None.
33.2.1.3.2 Description
33.2.1.3.3 Direct Slots
33.2.1.3.3.1 Slot: topic-pi
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
33.2.1.3.3.1.1 Accessors

33.2.1.3.3.1.1.1 Slot Accessor: topic-pi
33.2.1.3.3.1.1.1.1 Syntax
(topic-pi object)
33.2.1.3.3.1.1.1.2 Methods
  • (topic-pi (ftm-topic clml.nonparametric.ftm:ftm topic))
33.2.1.3.3.2 Slot: topic-phi
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
33.2.1.3.3.2.1 Accessors

33.2.1.3.3.2.1.1 Slot Accessor: topic-phi
33.2.1.3.3.2.1.1.1 Syntax
(topic-phi object)
33.2.1.3.3.2.1.1.2 Methods
  • (topic-phi (ftm-topic clml.nonparametric.ftm:ftm topic))
33.2.1.3.3.3 Slot: dist
  • Value type: t
  • Initial value: (MAKE-HASH-TABLE)
  • Initargs: none
  • Allocation: instance
33.2.1.3.3.3.1 Accessors

33.2.1.3.3.3.1.1 Slot Accessor: cluster-dist-table
33.2.1.3.3.3.1.1.1 Syntax
(cluster-dist-table object)
33.2.1.3.3.3.1.1.2 Methods
  • (cluster-dist-table (ftm-topic clml.nonparametric.ftm:ftm-topic))
33.2.1.3.3.4 Slot: ibp-dish
  • Value type: t
  • Initial value: (MAKE-HASH-TABLE)
  • Initargs: none
  • Allocation: instance
33.2.1.3.3.4.1 Accessors

33.2.1.3.3.4.1.1 Slot Accessor: topic-ibp-table
33.2.1.3.3.4.1.1.1 Syntax
(topic-ibp-table object)
33.2.1.3.3.4.1.1.2 Methods
  • (topic-ibp-table (ftm-topic clml.nonparametric.ftm:ftm-topic))
33.2.1.3.3.5 Slot: emission
  • Value type: t
  • Initial value: (MAKE-HASH-TABLE)
  • Initargs: none
  • Allocation: instance
33.2.1.3.3.5.1 Accessors

33.2.1.3.3.5.1.1 Slot Accessor: topic-emission
33.2.1.3.3.5.1.1.1 Syntax
(topic-emission object)
33.2.1.3.3.5.1.1.2 Methods
  • (topic-emission (ftm-topic clml.nonparametric.ftm:ftm-topic))
33.2.1.3.4 Indirect Slots
33.2.1.3.4.1 Slot: num
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance

33.2.1.4 Class: ftm-uniform
33.2.1.4.1 Inheritance
  • Parent classes: dp-distribution
  • Precedence list: ftm-uniform, dp-distribution, standard-object, slot-object, t
  • Direct subclasses: None.
33.2.1.4.2 Description
33.2.1.4.3 Direct Slots
33.2.1.4.3.1 Slot: cluster-class
  • Value type: t
  • Initial value: ='CLML.NONPARAMETRIC.FTM:FTM-TOPIC=
  • Initargs: none
  • Allocation: instance

33.2.2 External Functions


33.2.2.1 Function: ftm-ibp-alpha
33.2.2.1.1 Syntax
(ftm-ibp-alpha object)
33.2.2.1.2 Description

33.2.2.2 Inherited Function: get-top-n-words
33.2.2.2.1 Syntax
(get-top-n-words model n)
33.2.2.2.2 Description

33.2.2.3 Function: topic-phi
33.2.2.3.1 Syntax
(topic-phi object)
33.2.2.3.2 Description

33.2.2.4 Function: topic-pi
33.2.2.4.1 Syntax
(topic-pi object)
33.2.2.4.2 Description

34 Package: clml.nonparametric.hdp

  • Uses: common-lisp, hjs.util.meta, clml.nonparameteric.statistics, clml.nonparametric.dpm
  • Used by: clml.nonparametric.hdp-hmm, clml.nonparametric.ihmm, clml.nonparametric.blocked-hdp-hmm, clml.nonparametric.sticky-hdp hmm

34.1 Description

34.2 External Symbols

34.2.1 External Classes


34.2.1.1 Class: hdp
34.2.1.1.1 Inheritance
  • Parent classes: dpm
  • Precedence list: hdp, dpm, standard object, slot-object, t
  • Direct subclasses: sliced-hdp
34.2.1.1.2 Description
34.2.1.1.3 Direct Slots
34.2.1.1.3.1 Slot: gamma
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:GAMMA-RANDOM CLML.NONPARAMETRIC.DPM:*HYPER-BASE-A* CLML.NONPARAMETRIC.DPM:*HYPER-BASE-B*)=
  • Initargs: none
  • Allocation: instance
34.2.1.1.3.1.1 Accessors

34.2.1.1.3.1.1.1 Slot Accessor: hdp-gamma
34.2.1.1.3.1.1.1.1 Syntax
(hdp-gamma object)
34.2.1.1.3.1.1.1.2 Methods
  • (hdp-gamma (hdp clml.nonparametric.hdp:hdp))
34.2.1.1.3.2 Slot: beta_new
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:GAMMA-RANDOM 1.0 1.0)
  • Initargs: none
  • Allocation: instance
34.2.1.1.3.2.1 Accessors

34.2.1.1.3.2.1.1 Slot Accessor: hdp-beta
34.2.1.1.3.2.1.1.1 Syntax
(hdp-beta object)
34.2.1.1.3.2.1.1.2 Methods
  • (hdp-beta (hdp clml.nonparametric.hdp:hdp))
34.2.1.1.3.3 Slot: beta-tmp
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 0 :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
34.2.1.1.3.3.1 Accessors

34.2.1.1.3.3.1.1 Slot Accessor: hdp-beta-tmp
34.2.1.1.3.3.1.1.1 Syntax
(hdp-beta-tmp object)
34.2.1.1.3.3.1.1.2 Methods
  • (hdp-beta-tmp (hdp clml.nonparametric.hdp:hdp))
34.2.1.1.3.4 Slot: abm-tmp
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 1 :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
34.2.1.1.3.4.1 Accessors

34.2.1.1.3.4.1.1 Slot Accessor: hdp-abm-tmp
34.2.1.1.3.4.1.1.1 Syntax
(hdp-abm-tmp object)
34.2.1.1.3.4.1.1.2 Methods
  • (hdp-abm-tmp (hdp clml.nonparametric.hdp:hdp))
34.2.1.1.3.5 Slot: table-p
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 1 :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
34.2.1.1.3.5.1 Accessors

34.2.1.1.3.5.1.1 Slot Accessor: hdp-table-p
34.2.1.1.3.5.1.1.1 Syntax
(hdp-table-p object)
34.2.1.1.3.5.1.1.2 Methods
  • (hdp-table-p (hdp clml.nonparametric.hdp:hdp))
34.2.1.1.4 Indirect Slots
34.2.1.1.4.1 Internal Slot: data
  • Value type: t
  • Initial value: NIL
  • Initargs: data
  • Allocation: instance
34.2.1.1.4.2 Slot: estimate-base?
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
34.2.1.1.4.3 Internal Slot: p
  • Value type: t
  • Initial value: (MAKE-ARRAY 0 :FILL-POINTER T :ADJUSTABLE T :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
34.2.1.1.4.4 Slot: dpm-hyper
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:GAMMA-RANDOM CLML.NONPARAMETRIC.DPM:*HYPER-BASE-A* CLML.NONPARAMETRIC.DPM:*HYPER-BASE-B*)=
  • Initargs: none
  • Allocation: instance
34.2.1.1.4.5 Slot: layers
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 1 :ELEMENT-TYPE 'FIXNUM

    :INITIAL-ELEMENT 0)=

  • Initargs: none
  • Allocation: instance
34.2.1.1.4.6 Slot: clusteres
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 0)
  • Initargs: none
  • Allocation: instance
34.2.1.1.4.7 Slot: base-distribution
  • Value type: t
  • Initial value: NIL
  • Initargs: base-distribution
  • Allocation: instance
34.2.1.1.4.8 Slot: dpm-k
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance

34.2.1.2 Class: hdp-cluster
34.2.1.2.1 Inheritance
  • Parent classes: cluster
  • Precedence list: hdp-cluster, cluster, standard-object, slot-object, t
  • Direct subclasses: None.
34.2.1.2.2 Description
34.2.1.2.3 Direct Slots
34.2.1.2.3.1 Slot: latent-table
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance
34.2.1.2.3.1.1 Accessors

34.2.1.2.3.1.1.1 Slot Accessor: cluster-latent-table
34.2.1.2.3.1.1.1.1 Syntax
(cluster-latent-table object)
34.2.1.2.3.1.1.1.2 Methods
  • (cluster-latent-table (hdp-cluster clml.nonparametric.hdp:hdp-cluster))
34.2.1.2.3.2 Slot: beta
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:GAMMA-RANDOM 1.0 1.0)
  • Initargs: none
  • Allocation: instance
34.2.1.2.3.2.1 Accessors

34.2.1.2.3.2.1.1 Slot Accessor: cluster-beta
34.2.1.2.3.2.1.1.1 Syntax
(cluster-beta object)
34.2.1.2.3.2.1.1.2 Methods
  • (cluster-beta (hdp-cluster clml.nonparametric.hdp:hdp-cluster))
34.2.1.2.3.3 Slot: tmp-table
  • Value type: t
  • Initial value: (MAKE-HASH-TABLE)
  • Initargs: none
  • Allocation: instance
34.2.1.2.3.3.1 Accessors

34.2.1.2.3.3.1.1 Slot Accessor: cluster-tmp-table
34.2.1.2.3.3.1.1.1 Syntax
(cluster-tmp-table object)
34.2.1.2.3.3.1.1.2 Methods
  • (cluster-tmp-table (hdp-cluster clml.nonparametric.hdp:hdp-cluster))
34.2.1.2.4 Indirect Slots
34.2.1.2.4.1 Slot: num
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance

34.2.1.3 Class: hdp-distribution
34.2.1.3.1 Inheritance
  • Parent classes: dp-distribution
  • Precedence list: hdp-distribution, dp distribution, standard-object, slot-object, t
  • Direct subclasses: None.
34.2.1.3.2 Description
34.2.1.3.3 Direct Slots
34.2.1.3.3.1 Slot: cluster-class
  • Value type: t
  • Initial value: ='CLML.NONPARAMETRIC.HDP:HDP-CLUSTER=
  • Initargs: none
  • Allocation: instance

34.2.1.4 Class: sliced-hdp
34.2.1.4.1 Inheritance
  • Parent classes: hdp
  • Precedence list: sliced-hdp, hdp, dpm, standard-object, slot-object, t
  • Direct subclasses: None.
34.2.1.4.2 Description
34.2.1.4.3 Direct Slots
34.2.1.4.4 Indirect Slots
34.2.1.4.4.1 Slot: table-p
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 1 :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
34.2.1.4.4.2 Slot: abm-tmp
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 1 :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
34.2.1.4.4.3 Slot: beta-tmp
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 0 :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
34.2.1.4.4.4 Slot: beta_new
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:GAMMA-RANDOM 1.0 1.0)
  • Initargs: none
  • Allocation: instance
34.2.1.4.4.5 Slot: gamma
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:GAMMA-RANDOM CLML.NONPARAMETRIC.DPM:*HYPER-BASE-A* CLML.NONPARAMETRIC.DPM:*HYPER-BASE-B*)=
  • Initargs: none
  • Allocation: instance
34.2.1.4.4.6 Internal Slot: data
  • Value type: t
  • Initial value: NIL
  • Initargs: data
  • Allocation: instance
34.2.1.4.4.7 Slot: estimate-base?
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
34.2.1.4.4.8 Internal Slot: p
  • Value type: t
  • Initial value: (MAKE-ARRAY 0 :FILL-POINTER T :ADJUSTABLE T :ELEMENT-TYPE 'DOUBLE-FLOAT)
  • Initargs: none
  • Allocation: instance
34.2.1.4.4.9 Slot: dpm-hyper
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:GAMMA-RANDOM CLML.NONPARAMETRIC.DPM:*HYPER-BASE-A* CLML.NONPARAMETRIC.DPM:*HYPER-BASE-B*)=
  • Initargs: none
  • Allocation: instance
34.2.1.4.4.10 Slot: layers
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 1 :ELEMENT-TYPE 'FIXNUM

    :INITIAL-ELEMENT 0)=

  • Initargs: none
  • Allocation: instance
34.2.1.4.4.11 Slot: clusteres
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 0)
  • Initargs: none
  • Allocation: instance
34.2.1.4.4.12 Slot: base-distribution
  • Value type: t
  • Initial value: NIL
  • Initargs: base-distribution
  • Allocation: instance
34.2.1.4.4.13 Slot: dpm-k
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance

34.2.2 External Functions


34.2.2.1 Function: cluster-beta
34.2.2.1.1 Syntax
(cluster-beta object)
34.2.2.1.2 Description

34.2.2.2 Function: cluster-latent-table
34.2.2.2.1 Syntax
(cluster-latent-table object)
34.2.2.2.2 Description

34.2.2.3 Function: cluster-tmp-table
34.2.2.3.1 Syntax
(cluster-tmp-table object)
34.2.2.3.2 Description

34.2.2.4 Function: hdp-beta
34.2.2.4.1 Syntax
(hdp-beta object)
34.2.2.4.2 Description

34.2.2.5 Function: hdp-gamma
34.2.2.5.1 Syntax
(hdp-gamma object)
34.2.2.5.2 Description

34.2.2.6 Function: sample-latent-table
34.2.2.6.1 Syntax
(sample-latent-table cluster &rest args &key franchise alpha kappa alpha
                     franchise &allow-other-keys)
34.2.2.6.2 Description

sample "latent" table for HDP direct assignment

35 Package: clml.nonparametric.hdp-lda

  • Uses: common-lisp, clml.nonparameteric.statistics, hjs.util.meta
  • Used by: clml.test

35.1 Description

Package for Latent-Dirichlet-Allocation by Hierarchical-Dirichlet-Process

35.1.0.1 sample usage
SVM.WSS3(44): (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc-train-for-svm.csv")
						 :type :csv
						 :csv-type-spec (make-list 10 :initial-element 'double-float))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
NUMBER OF DIMENSIONS: 10
DATA POINTS: 338 POINTS
SVM.WSS3(45): (setf training-vector (dataset-points (pick-and-specialize-data * :data-types (make-list 10 :initial-element :numeric))))
 #(#(5.0 4.0 4.0 5.0 7.0 10.0 3.0 2.0 1.0 1.0) #(6.0 8.0 8.0 1.0 3.0 4.0 3.0 7.0 1.0 1.0) #(8.0 10.0 10.0 8.0 7.0 10.0 9.0 7.0 1.0 -1.0)
  #(2.0 1.0 2.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) #(4.0 2.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0) #(2.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0)
  #(1.0 1.0 1.0 1.0 2.0 3.0 3.0 1.0 1.0 1.0) #(7.0 4.0 6.0 4.0 6.0 1.0 4.0 3.0 1.0 -1.0) #(4.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0)
  #(6.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) ...)
SVM.WSS3(46): (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc-test-for-svm.csv")
						 :type :csv
						 :csv-type-spec (make-list 10 :initial-element 'double-float))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
NUMBER OF DIMENSIONS: 10
DATA POINTS: 345 POINTS
SVM.WSS3(47): (setf test-vector (dataset-points (pick-and-specialize-data * :data-types (make-list 10 :initial-element :numeric))))
 #(#(5.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) #(3.0 1.0 1.0 1.0 2.0 2.0 3.0 1.0 1.0 1.0) #(4.0 1.0 1.0 3.0 2.0 1.0 3.0 1.0 1.0 1.0)
  #(1.0 1.0 1.0 1.0 2.0 10.0 3.0 1.0 1.0 1.0) #(2.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 5.0 1.0) #(1.0 1.0 1.0 1.0 1.0 1.0 3.0 1.0 1.0 1.0)
  #(5.0 3.0 3.0 3.0 2.0 3.0 4.0 4.0 1.0 -1.0) #(8.0 7.0 5.0 10.0 7.0 9.0 5.0 5.0 4.0 -1.0) #(4.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0)
  #(10.0 7.0 7.0 6.0 4.0 10.0 4.0 1.0 2.0 -1.0) ...)
SVM.WSS3(49): (setf kernel (make-rbf-kernel :gamma 0.05))
 #<Closure (:INTERNAL MAKE-RBF-KERNEL 0) @ #x101ba6a6f2>
SVM.WSS3(50): (setf svm (make-svm-learner training-vector kernel :c 10 :file-name "svm-sample" :external-format :utf-8))
 #<Closure (:INTERNAL MAKE-DISCRIMINANT-FUNCTION 0) @ #x101bc76a12>
SVM.WSS3(51): (funcall svm (svref test-vector 0))
1.0
SVM.WSS3(52): (svm-validation svm test-vector)
(((1.0 . -1.0) . 2) ((-1.0 . -1.0) . 120) ((-1.0 . 1.0) . 10) ((1.0 . 1.0) . 213))
96.52173913043478
SVM.WSS3(53): (setf svm2 (load-svm-learner "svm-sample" kernel :external-format :utf-8))
 #<Closure (:INTERNAL MAKE-DISCRIMINANT-FUNCTION 0) @ #x101be9db02>
SVM.WSS3(54): (svm-validation svm2 test-vector)
(((1.0 . -1.0) . 2) ((-1.0 . -1.0) . 120) ((-1.0 . 1.0) . 10) ((1.0 . 1.0) . 213))
96.52173913043478

35.2 External Symbols

35.2.1 External Classes


35.2.1.1 Inherited Class: document
35.2.1.1.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: document, standard-object, slot-object, t
  • Direct subclasses: None.
35.2.1.1.2 Description
35.2.1.1.3 Direct Slots
35.2.1.1.3.1 Inherited Slot: id
  • Value type: t
  • Initial value: NIL
  • Initargs: id
  • Allocation: instance
35.2.1.1.3.1.1 Accessors

35.2.1.1.3.1.1.1 Inherited Slot Accessor: document-id
35.2.1.1.3.1.1.1.1 Syntax
(document-id object)
35.2.1.1.3.1.1.1.2 Methods
  • (document-id (document document))
35.2.1.1.3.2 Internal Slot: words
  • Value type: t
  • Initial value: NIL
  • Initargs: words
  • Allocation: instance
35.2.1.1.3.2.1 Accessors

35.2.1.1.3.2.1.1 Inherited Slot Accessor: document-words
35.2.1.1.3.2.1.1.1 Syntax
(document-words object)
35.2.1.1.3.2.1.1.2 Methods
  • (document-words (document document))
35.2.1.1.3.3 Internal Slot: thetas
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
35.2.1.1.3.3.1 Accessors

35.2.1.1.3.3.1.1 Inherited Slot Accessor: document-thetas
35.2.1.1.3.3.1.1.1 Syntax
(document-thetas object)
35.2.1.1.3.3.1.1.2 Methods
  • (document-thetas (document document))
35.2.1.1.3.4 Slot: restaurant
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
35.2.1.1.3.4.1 Accessors

35.2.1.1.3.4.1.1 Slot Accessor: document-restaurant
35.2.1.1.3.4.1.1.1 Syntax
(document-restaurant object)
35.2.1.1.3.4.1.1.2 Methods
  • (document-restaurant (document document))
35.2.1.1.3.5 Slot: layers
  • Value type: t
  • Initial value: =(CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 1 :INITIAL ELEMENT 0

    :ELEMENT-TYPE 'FIXNUM)=

  • Initargs: none
  • Allocation: instance
35.2.1.1.3.5.1 Accessors

35.2.1.1.3.5.1.1 Slot Accessor: document-layer-points
35.2.1.1.3.5.1.1.1 Syntax
(document-layer-points object)
35.2.1.1.3.5.1.1.2 Methods
  • (document-layer-points (document document))
35.2.1.1.3.6 Internal Slot: p
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
35.2.1.1.3.6.1 Accessors

35.2.1.1.3.6.1.1 Slot Accessor: document-p
35.2.1.1.3.6.1.1.1 Syntax
(document-p object)
35.2.1.1.3.6.1.1.2 Methods
  • (document-p (document document))

35.2.1.2 Inherited Class: hdp-lda
35.2.1.2.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: hdp-lda, standard-object, slot-object, t
  • Direct subclasses: None.
35.2.1.2.2 Description
  • accessor:
    • topic-count: <integer>, number of topics
    • hdp-lda-alpha: value of hyperparameter alpha
    • hdp-lda-beta: value of hyperparameter beta
    • hdp-lda-gamma: value of hyperparameter gamma
35.2.1.2.3 Direct Slots
35.2.1.2.3.1 Internal Slot: k
  • Value type: t
  • Initial value: 0
  • Initargs: k
  • Allocation: instance
35.2.1.2.3.1.1 Accessors

35.2.1.2.3.1.1.1 Inherited Slot Accessor: topic-count
35.2.1.2.3.1.1.1.1 Syntax
(topic-count object)
35.2.1.2.3.1.1.1.2 Methods
  • (topic-count (hdp-lda hdp-lda))
35.2.1.2.3.2 Slot: topics
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
35.2.1.2.3.2.1 Accessors

35.2.1.2.3.2.1.1 Slot Accessor: hdp-lda-topics
35.2.1.2.3.2.1.1.1 Syntax
(hdp-lda-topics object)
35.2.1.2.3.2.1.1.2 Methods
  • (hdp-lda-topics (hdp-lda hdp-lda))
35.2.1.2.3.3 Slot: topic-tables
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
35.2.1.2.3.3.1 Accessors

35.2.1.2.3.3.1.1 Slot Accessor: hdp-lda-topic-tables
35.2.1.2.3.3.1.1.1 Syntax
(hdp-lda-topic-tables object)
35.2.1.2.3.3.1.1.2 Methods
  • (hdp-lda-topic-tables (hdp-lda hdp-lda))
35.2.1.2.3.4 Slot: topic-occurs
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
35.2.1.2.3.4.1 Accessors

35.2.1.2.3.4.1.1 Slot Accessor: hdp-lda-topic-occurs
35.2.1.2.3.4.1.1.1 Syntax
(hdp-lda-topic-occurs object)
35.2.1.2.3.4.1.1.2 Methods
  • (hdp-lda-topic-occurs (hdp-lda hdp-lda))
35.2.1.2.3.5 Slot: ntables
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance
35.2.1.2.3.5.1 Accessors

35.2.1.2.3.5.1.1 Slot Accessor: hdp-lda-ntables
35.2.1.2.3.5.1.1.1 Syntax
(hdp-lda-ntables object)
35.2.1.2.3.5.1.1.2 Methods
  • (hdp-lda-ntables (hdp-lda hdp-lda))
35.2.1.2.3.6 Slot: alpha
  • Value type: t
  • Initial value: NIL
  • Initargs: alpha
  • Allocation: instance
35.2.1.2.3.6.1 Accessors

35.2.1.2.3.6.1.1 Slot Accessor: hdp-lda-alpha
35.2.1.2.3.6.1.1.1 Syntax
(hdp-lda-alpha object)
35.2.1.2.3.6.1.1.2 Methods
  • (hdp-lda-alpha (hdp-lda hdp-lda))
35.2.1.2.3.7 Slot: beta
  • Value type: t
  • Initial value: NIL
  • Initargs: beta
  • Allocation: instance
35.2.1.2.3.7.1 Accessors

35.2.1.2.3.7.1.1 Slot Accessor: hdp-lda-beta
35.2.1.2.3.7.1.1.1 Syntax
(hdp-lda-beta object)
35.2.1.2.3.7.1.1.2 Methods
  • (hdp-lda-beta (hdp-lda hdp-lda))
35.2.1.2.3.8 Slot: gamma
  • Value type: t
  • Initial value: NIL
  • Initargs: gamma
  • Allocation: instance
35.2.1.2.3.8.1 Accessors

35.2.1.2.3.8.1.1 Slot Accessor: hdp-lda-gamma
35.2.1.2.3.8.1.1.1 Syntax
(hdp-lda-gamma object)
35.2.1.2.3.8.1.1.2 Methods
  • (hdp-lda-gamma (hdp-lda hdp-lda))
35.2.1.2.3.9 Internal Slot: p
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
35.2.1.2.3.9.1 Accessors

35.2.1.2.3.9.1.1 Slot Accessor: hdp-lda-p
35.2.1.2.3.9.1.1.1 Syntax
(hdp-lda-p object)
35.2.1.2.3.9.1.1.2 Methods
  • (hdp-lda-p (hdp-lda hdp-lda))
35.2.1.2.3.10 Internal Slot: data
  • Value type: t
  • Initial value: NIL
  • Initargs: data
  • Allocation: instance
35.2.1.2.3.10.1 Accessors

35.2.1.2.3.10.1.1 Inherited Slot Accessor: hdp-lda-data
35.2.1.2.3.10.1.1.1 Syntax
(hdp-lda-data object)
35.2.1.2.3.10.1.1.2 Methods
  • (hdp-lda-data (hdp-lda hdp-lda))
35.2.1.2.3.11 Slot: f-k
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
35.2.1.2.3.11.1 Accessors

35.2.1.2.3.11.1.1 Slot Accessor: hdp-lda-f-k
35.2.1.2.3.11.1.1.1 Syntax
(hdp-lda-f-k object)
35.2.1.2.3.11.1.1.2 Methods
  • (hdp-lda-f-k (hdp-lda hdp-lda))
35.2.1.2.3.12 Slot: word-table
  • Value type: t
  • Initial value: (MAKE-HASH-TABLE :TEST #'EQUAL)
  • Initargs: none
  • Allocation: instance
35.2.1.2.3.12.1 Accessors

35.2.1.2.3.12.1.1 Slot Accessor: word-table
35.2.1.2.3.12.1.1.1 Syntax
(word-table object)
35.2.1.2.3.12.1.1.2 Methods
  • (word-table (hdp-lda hdp-lda))
35.2.1.2.3.13 Slot: revert-table
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
35.2.1.2.3.13.1 Accessors

35.2.1.2.3.13.1.1 Slot Accessor: revert-table
35.2.1.2.3.13.1.1.1 Syntax
(revert-table object)
35.2.1.2.3.13.1.1.2 Methods
  • (revert-table (hdp-lda hdp-lda))
35.2.1.2.3.14 Inherited Slot: id
  • Value type: t
  • Initial value: -1
  • Initargs: none
  • Allocation: instance
35.2.1.2.3.14.1 Accessors

35.2.1.2.3.14.1.1 Inherited Slot Accessor: vocabulary
35.2.1.2.3.14.1.1.1 Syntax
(vocabulary object)
35.2.1.2.3.14.1.1.2 Methods
  • (vocabulary (hdp-lda hdp-lda))

35.2.2 External Structures


35.2.2.1 Inherited Structure: table
35.2.2.1.1 Description
35.2.2.1.2 Slots
35.2.2.1.2.1 Slot: dish
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
35.2.2.1.2.2 Slot: customer
  • Value type: t
  • Initial value: 0
  • Initargs: none
  • Allocation: instance
35.2.2.1.2.3 Slot: customers
  • Value type: t
  • Initial value: (CLML.NONPARAMETERIC.STATISTICS:MAKE-ADARRAY 0)
  • Initargs: none
  • Allocation: instance

35.2.2.2 Inherited Structure: word
35.2.2.2.1 Description
35.2.2.2.2 Slots
35.2.2.2.2.1 Inherited Slot: id
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
35.2.2.2.2.2 Slot: assign
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

35.2.3 External Global Variables


35.2.3.1 Inherited Variable: *alpha-base-a*
35.2.3.1.1 Value
1.0

Type: double-float

35.2.3.1.2 Description

35.2.3.2 Inherited Variable: *alpha-base-b*
35.2.3.2.1 Value
0.1

Type: double-float

35.2.3.2.2 Description

35.2.3.3 Inherited Variable: *default-beta*
35.2.3.3.1 Value
0.1

Type: double-float

35.2.3.3.2 Description

35.2.3.4 Inherited Variable: *gamma-base-a*
35.2.3.4.1 Value
1.0

Type: double-float

35.2.3.4.2 Description

35.2.3.5 Inherited Variable: *gamma-base-b*
35.2.3.5.1 Value
0.1

Type: double-float

35.2.3.5.2 Description

35.2.4 External Functions


35.2.4.1 Inherited Function: add-customer
35.2.4.1.1 Syntax
(add-customer hdp-lda word doc &optional (old))
35.2.4.1.2 Description

35.2.4.2 Inherited Function: assign-theta
35.2.4.2.1 Syntax
(assign-theta model)
35.2.4.2.2 Description

35.2.4.3 Inherited Function: document-id
35.2.4.3.1 Syntax
(document-id object)
35.2.4.3.2 Description

35.2.4.4 Inherited Function: document-thetas
35.2.4.4.1 Syntax
(document-thetas object)
35.2.4.4.2 Description

35.2.4.5 Inherited Function: document-words
35.2.4.5.1 Syntax
(document-words object)
35.2.4.5.2 Description

35.2.4.6 Inherited Function: get-phi
35.2.4.6.1 Syntax
(get-phi model)
35.2.4.6.2 Description

35.2.4.7 Inherited Function: get-top-n-words
35.2.4.7.1 Syntax
(get-top-n-words model n)
35.2.4.7.2 Description

35.2.4.8 Inherited Function: hdp-lda-data
35.2.4.8.1 Syntax
(hdp-lda-data object)
35.2.4.8.2 Description

35.2.4.9 Inherited Function: hypers-sampling
35.2.4.9.1 Syntax
(hypers-sampling hdp-lda)
35.2.4.9.2 Description

35.2.4.10 Inherited Function: initialize
35.2.4.10.1 Syntax
(initialize hdp-lda)
35.2.4.10.2 Description

35.2.4.11 Inherited Function: remove-customer
35.2.4.11.1 Syntax
(remove-customer hdp-lda word doc)
35.2.4.11.2 Description

35.2.4.12 Inherited Function: revert-word
35.2.4.12.1 Syntax
(revert-word hdp-lda word-id)
35.2.4.12.2 Description

35.2.4.13 Inherited Function: sample-new-topic
35.2.4.13.1 Syntax
(sample-new-topic hdp-lda topic-p k-new)
35.2.4.13.2 Description

35.2.4.14 Inherited Function: sampling
35.2.4.14.1 Syntax
(sampling hdp-lda)
35.2.4.14.2 Description

35.2.4.15 Inherited Function: topic-count
35.2.4.15.1 Syntax
(topic-count object)
35.2.4.15.2 Description

35.2.4.16 Inherited Function: vocabulary
35.2.4.16.1 Syntax
(vocabulary object)
35.2.4.16.2 Description

35.2.4.17 Inherited Function: word-id
35.2.4.17.1 Syntax
(word-id instance)
35.2.4.17.2 Description

36 Package: clml.nonparametric.lfm

  • Uses: common-lisp, clml.nonparameteric.statistics, hjs.util.meta, hjs.util.matrix, hjs.util.vector, clml.nonparametric.dpm
  • Used by: None.

36.1 Description

36.2 External Symbols

37 Package: clml.numeric.fast-fourier-transform

  • Uses: common-lisp, hjs.util.meta
  • Used by: clml.time-series.statistics

37.1 Description

37.2 External Symbols

37.2.1 External Functions


37.2.1.1 Function: four1
37.2.1.1.1 Syntax
(four1 data nn &key (isign 1))
37.2.1.1.2 Description

37.2.1.2 Function: make-expt-array
37.2.1.2.1 Syntax
(make-expt-array base d)
37.2.1.2.2 Description

37.2.1.3 Function: realft
37.2.1.3.1 Syntax
(realft data n &key (isign 1))
37.2.1.3.2 Description

38 Package: clml.pca

  • Uses: common-lisp, hjs.util.meta, hjs.util.matrix, hjs.util.eigensystems, hjs.util.vector, hjs.learn.read-data, clml.statistics, hjs.learn.vars
  • Used by: clml.nearest-search.nearest

38.1 Description

38.1.0.1 Note
  • when using princomp and sub-princomp, if there exists two columns that are of same value, the result for :correlation method will not be converged. Therefore pick-and-specialize-data or divide-dataset must be used to remove one column.
38.1.0.2 sample usage
PCA(10): (setf dataset (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/pos.sexp") :external-format #+allegro :932 #-allegro :sjis))
PCA(11): (setf dataset (pick-and-specialize-data dataset :range '(2 3) :data-types '(:numeric :numeric)))
PCA(12): (princomp dataset :method :correlation)
 #<PCA-RESULT @ #x20fcd88a>
 #<PCA-MODEL @ #x20fcd8c2>
PCA(13): (princomp-projection dataset (cadr /))
 #(#(-0.18646787691278618 -0.5587877417431286)
  #(-0.2586922124306382 -0.6310120772609806)
  #(0.08929776779173992 -0.2830220970386028)
  #(-0.311219001898167 -0.6835388667285094)
  #(-0.19303372559622725 -0.5653535904265697)
  #(-0.19303372559622725 -0.5653535904265697)
  #(-0.19303372559622725 -0.5653535904265697)
  #(-1.9046466459275095 1.014942356235892)
  #(0.20748304409367965 -0.1648368207366632)
  #(0.161522103309592 -0.21079776152075083) ...)

;; learning and estimation by eigenface method and data for eyes
PCA(40): (let ((eyes (pick-and-specialize-data
                      (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/eyes200.sexp"))
                      :except '(0)
                      :data-types (append (make-list 1 :initial-element :category)
                                          (make-list 1680 :initial-element :numeric)))))
           (multiple-value-setq (for-learn for-estimate)
             (divide-dataset eyes :divide-ratio '(1 1) :random t)))

PCA(43): (multiple-value-setq (pca-result pca-model)
             (princomp (divide-dataset for-learn :except '(0)) :method :covariance))

PCA(65): (loop for dimension in '(1 5 10 20 30)
             as estimator = (make-face-estimator for-learn :dimension-thld dimension :method :eigenface
                                                 :pca-result pca-result :pca-model pca-model)
             as result = (face-estimate for-estimate estimator)
             do (format t "hitting-ratio: ~,3F~%"
                        (/ (count-if (lambda (p) (string-equal (aref p 0) (aref p 1)))
                                     (dataset-category-points result))
                           (length (dataset-points result)))))
Dimension : 1
Number of self-misjudgement : 53
hitting-ratio: 0.580
Dimension : 5
Number of self-misjudgement : 21
hitting-ratio: 0.860
Dimension : 10
Number of self-misjudgement : 18
hitting-ratio: 0.880
Dimension : 20
Number of self-misjudgement : 15
hitting-ratio: 0.890
Dimension : 30
Number of self-misjudgement : 13
hitting-ratio: 0.890

38.2 External Symbols

38.2.1 External Classes


38.2.1.1 Internal Class: pca-result
38.2.1.1.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: pca-result, standard-object, slot-object, t
  • Direct subclasses: None.
38.2.1.1.2 Description
38.2.1.1.2.0.0.1 pca-result (the result of principle component analysis)
  • accessor:
    • components : <vector of datapoints>, principle components、score
    • contributions : <vector of double-float>
    • loading-factors : <matrix> (pay attention the representation of the matrix is row major)
    • pca-method : :covariance | :correlation
38.2.1.1.3 Direct Slots
38.2.1.1.3.1 Slot: components
  • Value type: t
  • Initial value: NIL
  • Initargs: components
  • Allocation: instance
38.2.1.1.3.1.1 Accessors

38.2.1.1.3.1.1.1 Slot Accessor: components
38.2.1.1.3.1.1.1.1 Syntax
(components object)
38.2.1.1.3.1.1.1.2 Methods
  • (components (kernel-pca-result clml.pca::kernel-pca-result))
  • (components (pca-result clml.pca:pca-result))
38.2.1.1.3.2 Slot: contributions
  • Value type: t
  • Initial value: NIL
  • Initargs: contributions
  • Allocation: instance
38.2.1.1.3.2.1 Accessors

38.2.1.1.3.2.1.1 Slot Accessor: contributions
38.2.1.1.3.2.1.1.1 Syntax
(contributions object)
38.2.1.1.3.2.1.1.2 Methods
  • (contributions (kernel-pca-result clml.pca::kernel-pca-result))
  • (contributions (pca-result clml.pca:pca-result))
38.2.1.1.3.3 Slot: loading-factors
  • Value type: t
  • Initial value: NIL
  • Initargs: loading-factors
  • Allocation: instance
38.2.1.1.3.3.1 Accessors

38.2.1.1.3.3.1.1 Slot Accessor: loading-factors
38.2.1.1.3.3.1.1.1 Syntax
(loading-factors object)
38.2.1.1.3.3.1.1.2 Methods
  • (loading-factors (kernel-pca-model clml.pca::kernel-pca-model))
  • (loading-factors (kernel-pca-result clml.pca::kernel-pca-result))
  • (loading-factors (pca-model clml.pca::pca-model))
  • (loading-factors (pca-result clml.pca:pca-result))
38.2.1.1.3.4 Slot: pca-method
  • Value type: t
  • Initial value: NIL
  • Initargs: pca-method
  • Allocation: instance
38.2.1.1.3.4.1 Accessors

38.2.1.1.3.4.1.1 Slot Accessor: pca-method
38.2.1.1.3.4.1.1.1 Syntax
(pca-method object)
38.2.1.1.3.4.1.1.2 Methods
  • (pca-method (pca-model clml.pca::pca-model))
  • (pca-method (pca-result clml.pca:pca-result))
38.2.1.1.3.5 Inherited Slot: centroid
  • Value type: t
  • Initial value: NIL
  • Initargs: centroid
  • Allocation: instance
38.2.1.1.3.5.1 Accessors

38.2.1.1.3.5.1.1 Inherited Slot Accessor: centroid
38.2.1.1.3.5.1.1.1 Syntax
(centroid object)
38.2.1.1.3.5.1.1.2 Methods
  • (centroid (kernel-pca-model clml.pca::kernel-pca-model))
  • (centroid (kernel-pca-result clml.pca::kernel-pca-result))
  • (centroid (pca-model clml.pca::pca-model))
  • (centroid (pca-result clml.pca:pca-result))
38.2.1.1.3.6 Slot: orig-data-standard-deviations
  • Value type: t
  • Initial value: NIL
  • Initargs: orig-data-standard-deviations
  • Allocation: instance
38.2.1.1.3.6.1 Accessors

38.2.1.1.3.6.1.1 Slot Accessor: orig-data-standard-deviations
38.2.1.1.3.6.1.1.1 Syntax
(orig-data-standard-deviations object)
38.2.1.1.3.6.1.1.2 Methods
  • (orig-data-standard-deviations (pca-model clml.pca::pca-model))
  • (orig-data-standard-deviations (pca-result clml.pca:pca-result))

38.2.2 External Functions


38.2.2.1 Inherited Function: centroid
38.2.2.1.1 Syntax
(centroid object)
38.2.2.1.2 Description

38.2.2.2 Function: components
38.2.2.2.1 Syntax
(components object)
38.2.2.2.2 Description

38.2.2.3 Function: contributions
38.2.2.3.1 Syntax
(contributions object)
38.2.2.3.2 Description

38.2.2.4 Internal Function: face-estimate
38.2.2.4.1 Syntax
(face-estimate d estimator)
38.2.2.4.2 Description

38.2.2.5 Function: kernel-princomp
38.2.2.5.1 Syntax
(kernel-princomp dataset &key dimension-thld (kernel-fcn +linear+))
38.2.2.5.2 Description

38.2.2.6 Function: loading-factors
38.2.2.6.1 Syntax
(loading-factors object)
38.2.2.6.2 Description

38.2.2.7 Internal Function: make-face-estimator
38.2.2.7.1 Syntax
(make-face-estimator face-dataset &key dimension-thld (id-column personid)
                     (method eigenface) (pca-method covariance)
                     (d-fcn #'euclid-distance) pca-result pca-model bagging)
38.2.2.7.2 Description
38.2.2.7.2.0.1 make-face-estimator ((face-dataset numeric-and-category-dataset)

&key id-column dimension-thld method pca-method d-fcn pca-result pca-model)

  • return: (values estimator hash)
  • arguments:
    • face-dataset : <numeric-and-category-dataset>
    • id-column : <string>, the name for the face ID column, default value is personID
    • dimension-thld : 0 < <number> < 1 | 1 <= <integer>, the threshold for determining the number of dimensions to use.
    • method : :eigenface | :subspace, method for face recognition, eigenface or subspace method.
    • pca-method : :covariance | :correlation, only valid when method is :subspace
    • d-fcn : distance function for eigenface, default value is euclid-distance
    • pca-result : <pca-result>, necessary for :eigenface
    • pca-model : <pca-model>, necessary for :eigenface
  • note:
    • When 0 < dimension-thld < 1, it means the threshold for accumulated contribution ratio. A principle component's contribution ratio means its proportion in all principle components' contributions.
    • When 1 <= dimension-thld ( integer ), it means the number of principle components.
  • reference:

38.2.2.8 Function: pca-method
38.2.2.8.1 Syntax
(pca-method object)
38.2.2.8.2 Description

38.2.2.9 Function: princomp
38.2.2.9.1 Syntax
(princomp dataset &key method (method correlation))
38.2.2.9.2 Description
38.2.2.9.2.0.1 princomp (dataset &key (method :correlation))
  • return: (values pca-result pca-model)
  • arugments:
    • dataset : <numeric-dataset>
    • method : :covariance | :correlation

38.2.2.10 Function: princomp-projection
38.2.2.10.1 Syntax
(princomp-projection dataset pca-model)
38.2.2.10.2 Description
38.2.2.10.2.0.1 princomp-projection (dataset pca-model)
  • return: score (vector of datapoints)
  • arguments:
    • dataset : <numeric-dataset>
    • pca-model : <pca-model>, model by P.C.A.

38.2.2.11 Function: sub-princomp
38.2.2.11.1 Syntax
(sub-princomp dataset &key (method correlation) (dimension-thld 0.8))
38.2.2.11.2 Description
38.2.2.11.2.0.1 sub-princomp (dataset &key (method :correlation) (dimension-thld 0.8d0))
  • return: (values pca-result pca-model)
  • arugments:
    • dataset : <numeric-dataset>
    • method : :covariance | :correlation
    • dimension-thld : 0 < <number> < 1 | 1 <= <integer>, threshold for deciding principal components
  • note:
    • When 0 < dimension-thld < 1, it means the threshold for accumulated contribution ratio. A principle component's contribution ratio means its proportion in all principle components' contributions.
    • When 1 <= dimension-thld ( integer ), it means the number of principle components.

39 Package: clml.som

  • Uses: common-lisp, split sequence
  • Used by: clml.test

39.1 Description

Self-Organizing-Map package for self-organizing map

39.1.0.1 sample usage

39.2 External Symbols

39.2.1 External Functions


39.2.1.1 Inherited Function: do-som-by-filename
39.2.1.1.1 Syntax
(do-som-by-filename in-data-file s-topol s-neigh xdim ydim randomize length
                    ialpha iradius num-labels directory &key (debug nil))
39.2.1.1.2 Description

40 Package: clml.statistics

  • Uses: common-lisp, clml.statistics.rand
  • Used by: clml.test, clml.graph.graph-anomaly-detection, clml.graph.graph-centrality, clml.time-series.anomaly-detection, clml.time-series.changefinder, clml.time-series.autoregression, clml.time-series.state-space, clml.time-series.statistics, clml.time-series.util, clml.clustering.k-means2, clml.clustering.optics, clml.pca, hjs.learn.k-means, hjs.util.missing-value

40.1 Description

40.1.1 Notes

  • Numbers are not converted to (double) floats, for better accuracy with whole number data. This should be OK, since double data will generate double results (the number type is preserved).
  • Places marked with TODO are not optimal or not finished (see the TODO file for more details).
40.1.1.1 Distributions

Distributions are CLOS objects, and they are created by the constructor of the same name. The objects support the methods CDF (cumulative distribution function), DENSITY (MASS for discrete distributions), QUANTILE, RAND (gives a random number according to the given distribution), RAND-N (convenience function that gives n random numbers), MEAN and VARIANCE (giving the distribution's mean and variance, respectively). These take the distribution as their first parameter.

Most distributions can also be created with an estimator constructor. The estimator function has the form <distribution>-ESTIMATE, unless noted.

40.2 External Symbols

40.2.1 External Classes


40.2.1.1 Inherited Class: beta-distribution
40.2.1.1.1 Inheritance
  • Parent classes: continuous-distribution
  • Precedence list: beta-distribution, continuous-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.1.2 Description
40.2.1.1.3 Direct Slots
40.2.1.1.3.1 Slot: shape1
  • Value type: t
  • Initial value: NIL
  • Initargs: shape1
  • Allocation: instance
40.2.1.1.3.1.1 Accessors

40.2.1.1.3.1.1.1 Slot Accessor: shape1
40.2.1.1.3.1.1.1.1 Syntax
(shape1 object)
40.2.1.1.3.1.1.1.2 Methods
  • (shape1 (beta-distribution beta distribution))

40.2.1.1.3.1.1.2 Slot Accessor: set-shape1
40.2.1.1.3.1.1.2.1 Syntax
(set-shape1 new-value object)
40.2.1.1.3.1.1.2.2 Methods
  • (set-shape1 (new-value t) (beta-distribution beta distribution))
40.2.1.1.3.2 Slot: shape2
  • Value type: t
  • Initial value: NIL
  • Initargs: shape2
  • Allocation: instance
40.2.1.1.3.2.1 Accessors

40.2.1.1.3.2.1.1 Slot Accessor: shape2
40.2.1.1.3.2.1.1.1 Syntax
(shape2 object)
40.2.1.1.3.2.1.1.2 Methods
  • (shape2 (beta-distribution beta distribution))

40.2.1.1.3.2.1.2 Slot Accessor: set-shape2
40.2.1.1.3.2.1.2.1 Syntax
(set-shape2 new-value object)
40.2.1.1.3.2.1.2.2 Methods
  • (set-shape2 (new-value t) (beta-distribution beta distribution))
40.2.1.1.3.3 Slot: alpha-gamma
  • Value type: t
  • Initial value: (MAKE-INSTANCE 'GAMMA-DISTRIBUTION :SHAPE 1.0 :SCALE 1.0)
  • Initargs: none
  • Allocation: instance
40.2.1.1.3.4 Slot: beta-gamma
  • Value type: t
  • Initial value: (MAKE-INSTANCE 'GAMMA-DISTRIBUTION :SHAPE 1.0 :SCALE 1.0)
  • Initargs: none
  • Allocation: instance
40.2.1.1.4 Indirect Slots
40.2.1.1.4.1 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.1.4.2 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.1.4.3 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.1.4.4 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.1.4.5 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.2 Inherited Class: binomial-distribution
40.2.1.2.1 Inheritance
  • Parent classes: bernoulli-related-distribution
  • Precedence list: binomial-distribution, bernoulli-related-distribution, discrete-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.2.2 Description
40.2.1.2.3 Direct Slots
40.2.1.2.3.1 Internal Slot: size
  • Value type: t
  • Initial value: NIL
  • Initargs: size
  • Allocation: instance
40.2.1.2.3.1.1 Accessors

40.2.1.2.3.1.1.1 Internal Slot Accessor: size
40.2.1.2.3.1.1.1.1 Syntax
(size object)
40.2.1.2.3.1.1.1.2 Methods
  • (size (binomial-distribution binomial-distribution))

40.2.1.2.3.1.1.2 Slot Accessor: set-size
40.2.1.2.3.1.1.2.1 Syntax
(set-size new-value object)
40.2.1.2.3.1.1.2.2 Methods
  • (set-size (new-value t) (binomial-distribution binomial distribution))
40.2.1.2.3.2 Inherited Slot: table
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.2.3.3 Slot: ki
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.2.3.4 Slot: vi
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.2.3.5 Internal Slot: b
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.2.3.6 Internal Slot: k
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.2.3.7 Internal Slot: w
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.2.3.8 Slot: nsq
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.2.4 Indirect Slots
40.2.1.2.4.1 Slot: probability
  • Value type: t
  • Initial value: NIL
  • Initargs: probability
  • Allocation: instance
40.2.1.2.4.2 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.2.4.3 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.2.4.4 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.2.4.5 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.2.4.6 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.3 Inherited Class: cauchy-distribution
40.2.1.3.1 Inheritance
  • Parent classes: continuous-distribution
  • Precedence list: cauchy-distribution, continuous-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.3.2 Description
40.2.1.3.3 Direct Slots
40.2.1.3.3.1 Slot: location
  • Value type: t
  • Initial value: NIL
  • Initargs: location
  • Allocation: instance
40.2.1.3.3.1.1 Accessors

40.2.1.3.3.1.1.1 Slot Accessor: location
40.2.1.3.3.1.1.1.1 Syntax
(location object)
40.2.1.3.3.1.1.1.2 Methods
  • (location (logistic-distribution logistic-distribution))
  • (location (cauchy-distribution cauchy-distribution))

40.2.1.3.3.1.1.2 Slot Accessor: set-location
40.2.1.3.3.1.1.2.1 Syntax
(set-location new-value object)
40.2.1.3.3.1.1.2.2 Methods
  • (set-location (new-value t) (logistic-distribution logistic distribution))
  • (set-location (new-value t) (cauchy-distribution cauchy distribution))
40.2.1.3.3.2 Slot: scale
  • Value type: t
  • Initial value: NIL
  • Initargs: scale
  • Allocation: instance
40.2.1.3.3.2.1 Accessors

40.2.1.3.3.2.1.1 Slot Accessor: scale
40.2.1.3.3.2.1.1.1 Syntax
(scale object)
40.2.1.3.3.2.1.1.2 Methods
  • (scale (logistic-distribution logistic-distribution))
  • (scale (cauchy-distribution cauchy distribution))
  • (scale (exponential-distribution exponential-distribution))
  • (scale (gamma-like-distribution clml.statistics::gamma-like-distribution))

40.2.1.3.3.2.1.2 Slot Accessor: set-scale
40.2.1.3.3.2.1.2.1 Syntax
(set-scale new-value object)
40.2.1.3.3.2.1.2.2 Methods
  • (set-scale (new-value t) (logistic-distribution logistic distribution))
  • (set-scale (new-value t) (cauchy-distribution cauchy distribution))
  • (set-scale (new-value t) (gamma-like-distribution clml.statistics::gamma-like-distribution))
40.2.1.3.4 Indirect Slots
40.2.1.3.4.1 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.3.4.2 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.3.4.3 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.3.4.4 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.3.4.5 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.4 Inherited Class: chi-square-distribution
40.2.1.4.1 Inheritance
  • Parent classes: continuous-distribution
  • Precedence list: chi-square-distribution, continuous-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.4.2 Description
40.2.1.4.3 Direct Slots
40.2.1.4.3.1 Slot: freedom
  • Value type: t
  • Initial value: NIL
  • Initargs: freedom
  • Allocation: instance
40.2.1.4.3.1.1 Accessors

40.2.1.4.3.1.1.1 Slot Accessor: freedom
40.2.1.4.3.1.1.1.1 Syntax
(freedom object)
40.2.1.4.3.1.1.1.2 Methods
  • (freedom (t-distribution t-distribution))
  • (freedom (chi-square-distribution chi-square-distribution))

40.2.1.4.3.1.1.2 Slot Accessor: set-freedom
40.2.1.4.3.1.1.2.1 Syntax
(set-freedom new-value object)
40.2.1.4.3.1.1.2.2 Methods
  • (set-freedom (new-value t) (t-distribution t-distribution))
  • (set-freedom (new-value t) (chi-square-distribution chi square-distribution))
40.2.1.4.3.2 Slot: eq-gamma
  • Value type: t
  • Initial value: (MAKE-INSTANCE 'GAMMA-DISTRIBUTION :SHAPE 2.0 :SCALE 2.0)
  • Initargs: none
  • Allocation: instance
40.2.1.4.3.2.1 Accessors

40.2.1.4.3.2.1.1 Slot Accessor: eq-gamma
40.2.1.4.3.2.1.1.1 Syntax
(eq-gamma object)
40.2.1.4.3.2.1.1.2 Methods
  • (eq-gamma (chi-square-distribution chi-square-distribution))
40.2.1.4.4 Indirect Slots
40.2.1.4.4.1 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.4.4.2 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.4.4.3 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.4.4.4 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.4.4.5 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.5 Inherited Class: covariance
40.2.1.5.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: covariance, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.5.2 Description
40.2.1.5.3 Direct Slots
40.2.1.5.3.1 Slot: xy-mat-expec
  • Value type: t
  • Initial value: NIL
  • Initargs: xy-mat-expec
  • Allocation: instance
40.2.1.5.3.1.1 Accessors

40.2.1.5.3.1.1.1 Slot Accessor: xy-mat-expec
40.2.1.5.3.1.1.1.1 Syntax
(xy-mat-expec object)
40.2.1.5.3.1.1.1.2 Methods
  • (xy-mat-expec (covariance covariance))
40.2.1.5.3.2 Slot: x-mean-vec
  • Value type: t
  • Initial value: NIL
  • Initargs: x-mean-vec
  • Allocation: instance
40.2.1.5.3.2.1 Accessors

40.2.1.5.3.2.1.1 Slot Accessor: x-mean-vec
40.2.1.5.3.2.1.1.1 Syntax
(x-mean-vec object)
40.2.1.5.3.2.1.1.2 Methods
  • (x-mean-vec (covariance covariance))
40.2.1.5.3.3 Slot: y-mean-vec
  • Value type: t
  • Initial value: NIL
  • Initargs: y-mean-vec
  • Allocation: instance
40.2.1.5.3.3.1 Accessors

40.2.1.5.3.3.1.1 Slot Accessor: y-mean-vec
40.2.1.5.3.3.1.1.1 Syntax
(y-mean-vec object)
40.2.1.5.3.3.1.1.2 Methods
  • (y-mean-vec (covariance covariance))
40.2.1.5.3.4 Internal Slot: n
  • Value type: t
  • Initial value: NIL
  • Initargs: n
  • Allocation: instance
40.2.1.5.3.4.1 Accessors

40.2.1.5.3.4.1.1 Internal Slot Accessor: n
40.2.1.5.3.4.1.1.1 Syntax
(n object)
40.2.1.5.3.4.1.1.2 Methods
  • (n (matrix-covariance clml.graph.graph anomaly-detection::matrix-covariance))
  • (n (covariance covariance))

40.2.1.6 Inherited Class: erlang-distribution
40.2.1.6.1 Inheritance
  • Parent classes: gamma-like-distribution
  • Precedence list: erlang-distribution, gamma-like-distribution, continuous-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.6.2 Description
40.2.1.6.3 Direct Slots
40.2.1.6.3.1 Slot: include-zero
  • Value type: t
  • Initial value: NIL
  • Initargs: include-zero
  • Allocation: instance
40.2.1.6.3.1.1 Accessors

40.2.1.6.3.1.1.1 Slot Accessor: include-zero
40.2.1.6.3.1.1.1.1 Syntax
(include-zero object)
40.2.1.6.3.1.1.1.2 Methods
  • (include-zero (weibull-distribution weibull-distribution))
  • (include-zero (exponential-distribution exponential-distribution))
  • (include-zero (erlang-distribution erlang-distribution))

40.2.1.6.3.1.1.2 Slot Accessor: set-include-zero
40.2.1.6.3.1.1.2.1 Syntax
(set-include-zero new-value object)
40.2.1.6.3.1.1.2.2 Methods
  • (set-include-zero (new-value t) (weibull-distribution weibull-distribution))
  • (set-include-zero (new-value t) (exponential-distribution exponential-distribution))
  • (set-include-zero (new-value t) (erlang-distribution erlang-distribution))
40.2.1.6.4 Indirect Slots
40.2.1.6.4.1 Slot: shape
  • Value type: t
  • Initial value: NIL
  • Initargs: shape
  • Allocation: instance
40.2.1.6.4.2 Slot: scale
  • Value type: t
  • Initial value: NIL
  • Initargs: scale
  • Allocation: instance
40.2.1.6.4.3 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.6.4.4 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.6.4.5 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.6.4.6 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.6.4.7 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.7 Inherited Class: exponential-distribution
40.2.1.7.1 Inheritance
  • Parent classes: continuous-distribution
  • Precedence list: exponential-distribution, continuous-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.7.2 Description
40.2.1.7.3 Direct Slots
40.2.1.7.3.1 Slot: hazard
  • Value type: t
  • Initial value: NIL
  • Initargs: hazard
  • Allocation: instance
40.2.1.7.3.1.1 Accessors

40.2.1.7.3.1.1.1 Slot Accessor: hazard
40.2.1.7.3.1.1.1.1 Syntax
(hazard object)
40.2.1.7.3.1.1.1.2 Methods
  • (hazard (exponential-distribution exponential-distribution))

40.2.1.7.3.1.1.2 Slot Accessor: set-hazard
40.2.1.7.3.1.1.2.1 Syntax
(set-hazard new-value object)
40.2.1.7.3.1.1.2.2 Methods
  • (set-hazard (new-value t) (exponential-distribution exponential-distribution))
40.2.1.7.3.2 Slot: scale
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.7.3.2.1 Accessors

40.2.1.7.3.2.1.1 Slot Accessor: scale
40.2.1.7.3.2.1.1.1 Syntax
(scale object)
40.2.1.7.3.2.1.1.2 Methods
  • (scale (logistic-distribution logistic-distribution))
  • (scale (cauchy-distribution cauchy distribution))
  • (scale (exponential-distribution exponential-distribution))
  • (scale (gamma-like-distribution clml.statistics::gamma-like-distribution))
40.2.1.7.3.3 Slot: include-zero
  • Value type: t
  • Initial value: NIL
  • Initargs: include-zero
  • Allocation: instance
40.2.1.7.3.3.1 Accessors

40.2.1.7.3.3.1.1 Slot Accessor: include-zero
40.2.1.7.3.3.1.1.1 Syntax
(include-zero object)
40.2.1.7.3.3.1.1.2 Methods
  • (include-zero (weibull-distribution weibull-distribution))
  • (include-zero (exponential-distribution exponential-distribution))
  • (include-zero (erlang-distribution erlang-distribution))

40.2.1.7.3.3.1.2 Slot Accessor: set-include-zero
40.2.1.7.3.3.1.2.1 Syntax
(set-include-zero new-value object)
40.2.1.7.3.3.1.2.2 Methods
  • (set-include-zero (new-value t) (weibull-distribution weibull-distribution))
  • (set-include-zero (new-value t) (exponential-distribution exponential-distribution))
  • (set-include-zero (new-value t) (erlang-distribution erlang-distribution))
40.2.1.7.3.4 Slot: skewness
  • Value type: t
  • Initial value: 2.0
  • Initargs: none
  • Allocation: instance
40.2.1.7.3.5 Slot: kurtosis
  • Value type: t
  • Initial value: 9.0
  • Initargs: none
  • Allocation: instance
40.2.1.7.3.6 Inherited Slot: mode
  • Value type: t
  • Initial value: 0.0
  • Initargs: none
  • Allocation: instance
40.2.1.7.4 Indirect Slots
40.2.1.7.4.1 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.7.4.2 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.8 Inherited Class: f-distribution
40.2.1.8.1 Inheritance
  • Parent classes: continuous-distribution
  • Precedence list: f-distribution, continuous-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.8.2 Description
40.2.1.8.3 Direct Slots
40.2.1.8.3.1 Slot: freedom1
  • Value type: t
  • Initial value: NIL
  • Initargs: freedom1
  • Allocation: instance
40.2.1.8.3.1.1 Accessors

40.2.1.8.3.1.1.1 Slot Accessor: freedom1
40.2.1.8.3.1.1.1.1 Syntax
(freedom1 object)
40.2.1.8.3.1.1.1.2 Methods
  • (freedom1 (f-distribution f-distribution))

40.2.1.8.3.1.1.2 Slot Accessor: set-freedom1
40.2.1.8.3.1.1.2.1 Syntax
(set-freedom1 new-value object)
40.2.1.8.3.1.1.2.2 Methods
  • (set-freedom1 (new-value t) (f-distribution f-distribution))
40.2.1.8.3.2 Slot: freedom2
  • Value type: t
  • Initial value: NIL
  • Initargs: freedom2
  • Allocation: instance
40.2.1.8.3.2.1 Accessors

40.2.1.8.3.2.1.1 Slot Accessor: freedom2
40.2.1.8.3.2.1.1.1 Syntax
(freedom2 object)
40.2.1.8.3.2.1.1.2 Methods
  • (freedom2 (f-distribution f-distribution))

40.2.1.8.3.2.1.2 Slot Accessor: set-freedom2
40.2.1.8.3.2.1.2.1 Syntax
(set-freedom2 new-value object)
40.2.1.8.3.2.1.2.2 Methods
  • (set-freedom2 (new-value t) (f-distribution f-distribution))
40.2.1.8.3.3 Slot: chi1
  • Value type: t
  • Initial value: (MAKE-INSTANCE 'CHI-SQUARE-DISTRIBUTION :FREEDOM 1)
  • Initargs: none
  • Allocation: instance
40.2.1.8.3.4 Slot: chi2
  • Value type: t
  • Initial value: (MAKE-INSTANCE 'CHI-SQUARE-DISTRIBUTION :FREEDOM 1)
  • Initargs: none
  • Allocation: instance
40.2.1.8.3.5 Slot: f
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.8.4 Indirect Slots
40.2.1.8.4.1 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.8.4.2 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.8.4.3 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.8.4.4 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.8.4.5 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.9 Inherited Class: gamma-distribution
40.2.1.9.1 Inheritance
  • Parent classes: gamma-like-distribution
  • Precedence list: gamma-distribution, gamma-like-distribution, continuous-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.9.2 Description
40.2.1.9.3 Direct Slots
40.2.1.9.3.1 Slot: gamma-factor
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.9.3.1.1 Accessors

40.2.1.9.3.1.1.1 Slot Accessor: gamma-factor
40.2.1.9.3.1.1.1.1 Syntax
(gamma-factor object)
40.2.1.9.3.1.1.1.2 Methods
  • (gamma-factor (gamma-distribution gamma-distribution))
40.2.1.9.3.2 Slot: shape-inv
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.9.3.3 Internal Slot: d
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.9.3.4 Internal Slot: c
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.9.4 Indirect Slots
40.2.1.9.4.1 Slot: shape
  • Value type: t
  • Initial value: NIL
  • Initargs: shape
  • Allocation: instance
40.2.1.9.4.2 Slot: scale
  • Value type: t
  • Initial value: NIL
  • Initargs: scale
  • Allocation: instance
40.2.1.9.4.3 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.9.4.4 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.9.4.5 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.9.4.6 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.9.4.7 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.10 Inherited Class: geometric-distribution
40.2.1.10.1 Inheritance
  • Parent classes: bernoulli-related-distribution
  • Precedence list: geometric-distribution, bernoulli-related-distribution, discrete-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.10.2 Description
40.2.1.10.3 Direct Slots
40.2.1.10.3.1 Inherited Slot: table
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.3.2 Slot: ki
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.3.3 Slot: vi
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.3.4 Internal Slot: b
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.3.5 Internal Slot: k
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.3.6 Internal Slot: w
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.3.7 Slot: nsq
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.3.8 Slot: psq
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.3.9 Slot: q
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.3.10 Internal Slot: r
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.3.11 Internal Slot: c
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.4 Indirect Slots
40.2.1.10.4.1 Slot: probability
  • Value type: t
  • Initial value: NIL
  • Initargs: probability
  • Allocation: instance
40.2.1.10.4.2 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.4.3 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.4.4 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.4.5 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.10.4.6 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.11 Inherited Class: hypergeometric-distribution
40.2.1.11.1 Inheritance
  • Parent classes: discrete-distribution
  • Precedence list: hypergeometric-distribution, discrete-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.11.2 Description
40.2.1.11.3 Direct Slots
40.2.1.11.3.1 Slot: elements
  • Value type: t
  • Initial value: NIL
  • Initargs: elements
  • Allocation: instance
40.2.1.11.3.1.1 Accessors

40.2.1.11.3.1.1.1 Slot Accessor: elements
40.2.1.11.3.1.1.1.1 Syntax
(elements object)
40.2.1.11.3.1.1.1.2 Methods
  • (elements (hypergeometric-distribution hypergeometric-distribution))

40.2.1.11.3.1.1.2 Slot Accessor: set-elements
40.2.1.11.3.1.1.2.1 Syntax
(set-elements new-value object)
40.2.1.11.3.1.1.2.2 Methods
  • (set-elements (new-value t) (hypergeometric-distribution hypergeometric-distribution))
40.2.1.11.3.2 Slot: successes
  • Value type: t
  • Initial value: NIL
  • Initargs: successes
  • Allocation: instance
40.2.1.11.3.2.1 Accessors

40.2.1.11.3.2.1.1 Slot Accessor: successes
40.2.1.11.3.2.1.1.1 Syntax
(successes object)
40.2.1.11.3.2.1.1.2 Methods
  • (successes (hypergeometric-distribution hypergeometric-distribution))

40.2.1.11.3.2.1.2 Slot Accessor: set-successes
40.2.1.11.3.2.1.2.1 Syntax
(set-successes new-value object)
40.2.1.11.3.2.1.2.2 Methods
  • (set-successes (new-value t) (hypergeometric-distribution hypergeometric-distribution))
40.2.1.11.3.3 Internal Slot: samples
  • Value type: t
  • Initial value: NIL
  • Initargs: samples
  • Allocation: instance
40.2.1.11.3.3.1 Accessors

40.2.1.11.3.3.1.1 Internal Slot Accessor: samples
40.2.1.11.3.3.1.1.1 Syntax
(samples object)
40.2.1.11.3.3.1.1.2 Methods
  • (samples (hypergeometric-distribution hypergeometric-distribution))

40.2.1.11.3.3.1.2 Slot Accessor: set-samples
40.2.1.11.3.3.1.2.1 Syntax
(set-samples new-value object)
40.2.1.11.3.3.1.2.2 Methods
  • (set-samples (new-value t) (hypergeometric-distribution hypergeometric-distribution))
40.2.1.11.3.4 Inherited Slot: table
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.11.3.5 Slot: ki
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.11.3.6 Slot: vi
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.11.3.7 Internal Slot: b
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.11.3.8 Internal Slot: k
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.11.3.9 Internal Slot: w
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.11.3.10 Slot: nsq
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.11.3.11 Internal Slot: a1
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.11.4 Indirect Slots
40.2.1.11.4.1 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.11.4.2 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.11.4.3 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.11.4.4 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.11.4.5 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.12 Inherited Class: log-normal-distribution
40.2.1.12.1 Inheritance
  • Parent classes: continuous-distribution
  • Precedence list: log-normal-distribution, continuous-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.12.2 Description
40.2.1.12.3 Direct Slots
40.2.1.12.3.1 Slot: average
  • Value type: t
  • Initial value: NIL
  • Initargs: average
  • Allocation: instance
40.2.1.12.3.1.1 Accessors

40.2.1.12.3.1.1.1 Slot Accessor: average
40.2.1.12.3.1.1.1.1 Syntax
(average object)
40.2.1.12.3.1.1.1.2 Methods
  • (average (log-normal-distribution log-normal-distribution))
  • (average (normal-distribution normal-distribution))

40.2.1.12.3.1.1.2 Slot Accessor: set-average
40.2.1.12.3.1.1.2.1 Syntax
(set-average new-value object)
40.2.1.12.3.1.1.2.2 Methods
  • (set-average (new-value t) (log-normal-distribution log normal-distribution))
  • (set-average (new-value t) (normal-distribution normal distribution))
40.2.1.12.3.2 Internal Slot: std
  • Value type: t
  • Initial value: NIL
  • Initargs: std
  • Allocation: instance
40.2.1.12.3.2.1 Accessors

40.2.1.12.3.2.1.1 Internal Slot Accessor: std
40.2.1.12.3.2.1.1.1 Syntax
(std object)
40.2.1.12.3.2.1.1.2 Methods
  • (std (log-normal-distribution log normal-distribution))
  • (std (normal-distribution normal distribution))

40.2.1.12.3.2.1.2 Slot Accessor: set-std
40.2.1.12.3.2.1.2.1 Syntax
(set-std new-value object)
40.2.1.12.3.2.1.2.2 Methods
  • (set-std (new-value t) (log-normal-distribution log-normal distribution))
  • (set-std (new-value t) (normal-distribution normal distribution))
40.2.1.12.4 Indirect Slots
40.2.1.12.4.1 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.12.4.2 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.12.4.3 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.12.4.4 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.12.4.5 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.13 Inherited Class: logistic-distribution
40.2.1.13.1 Inheritance
  • Parent classes: continuous-distribution
  • Precedence list: logistic-distribution, continuous-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.13.2 Description
40.2.1.13.3 Direct Slots
40.2.1.13.3.1 Slot: location
  • Value type: t
  • Initial value: NIL
  • Initargs: location
  • Allocation: instance
40.2.1.13.3.1.1 Accessors

40.2.1.13.3.1.1.1 Slot Accessor: location
40.2.1.13.3.1.1.1.1 Syntax
(location object)
40.2.1.13.3.1.1.1.2 Methods
  • (location (logistic-distribution logistic-distribution))
  • (location (cauchy-distribution cauchy-distribution))

40.2.1.13.3.1.1.2 Slot Accessor: set-location
40.2.1.13.3.1.1.2.1 Syntax
(set-location new-value object)
40.2.1.13.3.1.1.2.2 Methods
  • (set-location (new-value t) (logistic-distribution logistic distribution))
  • (set-location (new-value t) (cauchy-distribution cauchy distribution))
40.2.1.13.3.2 Slot: scale
  • Value type: t
  • Initial value: NIL
  • Initargs: scale
  • Allocation: instance
40.2.1.13.3.2.1 Accessors

40.2.1.13.3.2.1.1 Slot Accessor: scale
40.2.1.13.3.2.1.1.1 Syntax
(scale object)
40.2.1.13.3.2.1.1.2 Methods
  • (scale (logistic-distribution logistic-distribution))
  • (scale (cauchy-distribution cauchy distribution))
  • (scale (exponential-distribution exponential-distribution))
  • (scale (gamma-like-distribution clml.statistics::gamma-like-distribution))

40.2.1.13.3.2.1.2 Slot Accessor: set-scale
40.2.1.13.3.2.1.2.1 Syntax
(set-scale new-value object)
40.2.1.13.3.2.1.2.2 Methods
  • (set-scale (new-value t) (logistic-distribution logistic distribution))
  • (set-scale (new-value t) (cauchy-distribution cauchy distribution))
  • (set-scale (new-value t) (gamma-like-distribution clml.statistics::gamma-like-distribution))
40.2.1.13.3.3 Slot: skewness
  • Value type: t
  • Initial value: 0.0
  • Initargs: none
  • Allocation: instance
40.2.1.13.3.4 Slot: kurtosis
  • Value type: t
  • Initial value: 4.2
  • Initargs: none
  • Allocation: instance
40.2.1.13.4 Indirect Slots
40.2.1.13.4.1 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.13.4.2 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.13.4.3 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.14 Inherited Class: negative-binomial-distribution
40.2.1.14.1 Inheritance
  • Parent classes: bernoulli-related-distribution
  • Precedence list: negative-binomial-distribution, bernoulli-related-distribution, discrete-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.14.2 Description
40.2.1.14.3 Direct Slots
40.2.1.14.3.1 Slot: success-r
  • Value type: t
  • Initial value: NIL
  • Initargs: success-r
  • Allocation: instance
40.2.1.14.3.1.1 Accessors

40.2.1.14.3.1.1.1 Slot Accessor: success-r
40.2.1.14.3.1.1.1.1 Syntax
(success-r object)
40.2.1.14.3.1.1.1.2 Methods
  • (success-r (negative-binomial-distribution negative-binomial-distribution))

40.2.1.14.3.1.1.2 Slot Accessor: set-success-r
40.2.1.14.3.1.1.2.1 Syntax
(set-success-r new-value object)
40.2.1.14.3.1.1.2.2 Methods
  • (set-success-r (new-value t) (negative-binomial-distribution negative-binomial-distribution))
40.2.1.14.3.2 Inherited Slot: table
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.3 Slot: ki
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.4 Slot: vi
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.5 Internal Slot: b
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.6 Internal Slot: k
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.7 Internal Slot: w
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.8 Slot: nsq
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.9 Slot: psq
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.10 Slot: q
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.11 Internal Slot: r
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.12 Slot: xl
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.13 Slot: xu
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.14 Slot: pl
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.15 Slot: pu
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.16 Slot: que
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.17 Internal Slot: s
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.3.18 Slot: tee
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.4 Indirect Slots
40.2.1.14.4.1 Slot: probability
  • Value type: t
  • Initial value: NIL
  • Initargs: probability
  • Allocation: instance
40.2.1.14.4.2 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.4.3 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.4.4 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.4.5 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.14.4.6 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.15 Inherited Class: normal-distribution
40.2.1.15.1 Inheritance
  • Parent classes: continuous-distribution
  • Precedence list: normal-distribution, continuous-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.15.2 Description
40.2.1.15.3 Direct Slots
40.2.1.15.3.1 Slot: average
  • Value type: t
  • Initial value: NIL
  • Initargs: average
  • Allocation: instance
40.2.1.15.3.1.1 Accessors

40.2.1.15.3.1.1.1 Slot Accessor: average
40.2.1.15.3.1.1.1.1 Syntax
(average object)
40.2.1.15.3.1.1.1.2 Methods
  • (average (log-normal-distribution log-normal-distribution))
  • (average (normal-distribution normal-distribution))

40.2.1.15.3.1.1.2 Slot Accessor: set-average
40.2.1.15.3.1.1.2.1 Syntax
(set-average new-value object)
40.2.1.15.3.1.1.2.2 Methods
  • (set-average (new-value t) (log-normal-distribution log normal-distribution))
  • (set-average (new-value t) (normal-distribution normal distribution))
40.2.1.15.3.2 Internal Slot: std
  • Value type: t
  • Initial value: NIL
  • Initargs: std
  • Allocation: instance
40.2.1.15.3.2.1 Accessors

40.2.1.15.3.2.1.1 Internal Slot Accessor: std
40.2.1.15.3.2.1.1.1 Syntax
(std object)
40.2.1.15.3.2.1.1.2 Methods
  • (std (log-normal-distribution log normal-distribution))
  • (std (normal-distribution normal distribution))

40.2.1.15.3.2.1.2 Slot Accessor: set-std
40.2.1.15.3.2.1.2.1 Syntax
(set-std new-value object)
40.2.1.15.3.2.1.2.2 Methods
  • (set-std (new-value t) (log-normal-distribution log-normal distribution))
  • (set-std (new-value t) (normal-distribution normal distribution))
40.2.1.15.3.3 Slot: skewness
  • Value type: t
  • Initial value: 0.0
  • Initargs: none
  • Allocation: instance
40.2.1.15.3.4 Slot: kurtosis
  • Value type: t
  • Initial value: 3.0
  • Initargs: none
  • Allocation: instance
40.2.1.15.4 Indirect Slots
40.2.1.15.4.1 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.15.4.2 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.15.4.3 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.16 Inherited Class: poisson-distribution
40.2.1.16.1 Inheritance
  • Parent classes: discrete-distribution
  • Precedence list: poisson-distribution, discrete-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.16.2 Description
40.2.1.16.3 Direct Slots
40.2.1.16.3.1 Slot: rate
  • Value type: t
  • Initial value: NIL
  • Initargs: rate
  • Allocation: instance
40.2.1.16.3.1.1 Accessors

40.2.1.16.3.1.1.1 Slot Accessor: rate
40.2.1.16.3.1.1.1.1 Syntax
(rate object)
40.2.1.16.3.1.1.1.2 Methods
  • (rate (poisson-distribution poisson distribution))

40.2.1.16.3.1.1.2 Slot Accessor: set-rate
40.2.1.16.3.1.1.2.1 Syntax
(set-rate new-value object)
40.2.1.16.3.1.1.2.2 Methods
  • (set-rate (new-value t) (poisson-distribution poisson distribution))
40.2.1.16.3.2 Inherited Slot: table
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.3 Slot: ki
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.4 Slot: vi
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.5 Internal Slot: b
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.6 Internal Slot: k
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.7 Internal Slot: w
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.8 Slot: nsq
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.9 Slot: psq
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.10 Slot: q
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.11 Internal Slot: r
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.12 Slot: xl
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.13 Slot: xu
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.14 Slot: pl
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.15 Slot: pu
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.3.16 Internal Slot: c
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.4 Indirect Slots
40.2.1.16.4.1 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.4.2 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.4.3 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.4.4 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.16.4.5 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.17 Inherited Class: t-distribution
40.2.1.17.1 Inheritance
  • Parent classes: continuous-distribution
  • Precedence list: t-distribution, continuous-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.17.2 Description
40.2.1.17.3 Direct Slots
40.2.1.17.3.1 Slot: freedom
  • Value type: t
  • Initial value: NIL
  • Initargs: freedom
  • Allocation: instance
40.2.1.17.3.1.1 Accessors

40.2.1.17.3.1.1.1 Slot Accessor: freedom
40.2.1.17.3.1.1.1.1 Syntax
(freedom object)
40.2.1.17.3.1.1.1.2 Methods
  • (freedom (t-distribution t-distribution))
  • (freedom (chi-square-distribution chi-square-distribution))

40.2.1.17.3.1.1.2 Slot Accessor: set-freedom
40.2.1.17.3.1.1.2.1 Syntax
(set-freedom new-value object)
40.2.1.17.3.1.1.2.2 Methods
  • (set-freedom (new-value t) (t-distribution t-distribution))
  • (set-freedom (new-value t) (chi-square-distribution chi square-distribution))
40.2.1.17.3.2 Slot: t-precalc
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.2.1 Accessors

40.2.1.17.3.2.1.1 Slot Accessor: t-precalc
40.2.1.17.3.2.1.1.1 Syntax
(t-precalc object)
40.2.1.17.3.2.1.1.2 Methods
  • (t-precalc (t-distribution t-distribution))

40.2.1.17.3.2.1.2 Slot Accessor: set-t-precalc
40.2.1.17.3.2.1.2.1 Syntax
(set-t-precalc new-value object)
40.2.1.17.3.2.1.2.2 Methods
  • (set-t-precalc (new-value t) (t-distribution t-distribution))
40.2.1.17.3.3 Internal Slot: r
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.4 Internal Slot: b
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.5 Internal Slot: c
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.6 Internal Slot: a
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.7 Internal Slot: d
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.8 Internal Slot: k
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.9 Internal Slot: w
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.10 Internal Slot: s
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.11 Internal Slot: p
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.12 Slot: q
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.13 Slot: t1
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.14 Slot: t2
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.15 Internal Slot: v1
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.3.16 Internal Slot: v2
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.4 Indirect Slots
40.2.1.17.4.1 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.4.2 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.4.3 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.4.4 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.17.4.5 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.18 Inherited Class: uniform-distribution
40.2.1.18.1 Inheritance
  • Parent classes: continuous-distribution
  • Precedence list: uniform-distribution, continuous-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.18.2 Description
40.2.1.18.3 Direct Slots
40.2.1.18.3.1 Internal Slot: from
  • Value type: t
  • Initial value: NIL
  • Initargs: from
  • Allocation: instance
40.2.1.18.3.1.1 Accessors

40.2.1.18.3.1.1.1 Slot Accessor: uniform-from
40.2.1.18.3.1.1.1.1 Syntax
(uniform-from object)
40.2.1.18.3.1.1.1.2 Methods
  • (uniform-from (uniform-distribution uniform-distribution))

40.2.1.18.3.1.1.2 Slot Accessor: set-uniform-from
40.2.1.18.3.1.1.2.1 Syntax
(set-uniform-from new-value object)
40.2.1.18.3.1.1.2.2 Methods
  • (set-uniform-from (new-value t) (uniform-distribution uniform-distribution))
40.2.1.18.3.2 Internal Slot: to
  • Value type: t
  • Initial value: NIL
  • Initargs: to
  • Allocation: instance
40.2.1.18.3.2.1 Accessors

40.2.1.18.3.2.1.1 Slot Accessor: uniform-to
40.2.1.18.3.2.1.1.1 Syntax
(uniform-to object)
40.2.1.18.3.2.1.1.2 Methods
  • (uniform-to (uniform-distribution uniform-distribution))

40.2.1.18.3.2.1.2 Slot Accessor: set-uniform-to
40.2.1.18.3.2.1.2.1 Syntax
(set-uniform-to new-value object)
40.2.1.18.3.2.1.2.2 Methods
  • (set-uniform-to (new-value t) (uniform-distribution uniform distribution))
40.2.1.18.3.3 Slot: width
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.18.3.3.1 Accessors

40.2.1.18.3.3.1.1 Slot Accessor: uniform-width
40.2.1.18.3.3.1.1.1 Syntax
(uniform-width object)
40.2.1.18.3.3.1.1.2 Methods
  • (uniform-width (uniform-distribution uniform-distribution))
40.2.1.18.3.4 Inherited Slot: denominator
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.18.3.4.1 Accessors

40.2.1.18.3.4.1.1 Slot Accessor: uniform-denom
40.2.1.18.3.4.1.1.1 Syntax
(uniform-denom object)
40.2.1.18.3.4.1.1.2 Methods
  • (uniform-denom (uniform-distribution uniform-distribution))

40.2.1.18.3.4.1.2 Slot Accessor: set-uniform-denom
40.2.1.18.3.4.1.2.1 Syntax
(set-uniform-denom new-value object)
40.2.1.18.3.4.1.2.2 Methods
  • (set-uniform-denom (new-value t) (uniform-distribution uniform-distribution))
40.2.1.18.3.5 Slot: skewness
  • Value type: t
  • Initial value: 0.0
  • Initargs: none
  • Allocation: instance
40.2.1.18.3.6 Slot: kurtosis
  • Value type: t
  • Initial value: 1.8
  • Initargs: none
  • Allocation: instance
40.2.1.18.4 Indirect Slots
40.2.1.18.4.1 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.18.4.2 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.18.4.3 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.1.19 Inherited Class: weibull-distribution
40.2.1.19.1 Inheritance
  • Parent classes: gamma-like-distribution
  • Precedence list: weibull-distribution, gamma-like-distribution, continuous-distribution, distribution, standard-object, slot-object, t
  • Direct subclasses: None.
40.2.1.19.2 Description
40.2.1.19.3 Direct Slots
40.2.1.19.3.1 Slot: include-zero
  • Value type: t
  • Initial value: NIL
  • Initargs: include-zero
  • Allocation: instance
40.2.1.19.3.1.1 Accessors

40.2.1.19.3.1.1.1 Slot Accessor: include-zero
40.2.1.19.3.1.1.1.1 Syntax
(include-zero object)
40.2.1.19.3.1.1.1.2 Methods
  • (include-zero (weibull-distribution weibull-distribution))
  • (include-zero (exponential-distribution exponential-distribution))
  • (include-zero (erlang-distribution erlang-distribution))

40.2.1.19.3.1.1.2 Slot Accessor: set-include-zero
40.2.1.19.3.1.1.2.1 Syntax
(set-include-zero new-value object)
40.2.1.19.3.1.1.2.2 Methods
  • (set-include-zero (new-value t) (weibull-distribution weibull-distribution))
  • (set-include-zero (new-value t) (exponential-distribution exponential-distribution))
  • (set-include-zero (new-value t) (erlang-distribution erlang-distribution))
40.2.1.19.3.2 Slot: r-inv
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.19.4 Indirect Slots
40.2.1.19.4.1 Slot: shape
  • Value type: t
  • Initial value: NIL
  • Initargs: shape
  • Allocation: instance
40.2.1.19.4.2 Slot: scale
  • Value type: t
  • Initial value: NIL
  • Initargs: scale
  • Allocation: instance
40.2.1.19.4.3 Inherited Slot: mode
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.19.4.4 Slot: kurtosis
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.19.4.5 Slot: skewness
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.19.4.6 Inherited Slot: variance
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
40.2.1.19.4.7 Inherited Slot: mean
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

40.2.2 External Global Variables


40.2.2.1 Inherited Variable: mean
40.2.2.1.1 Value
#(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0)

Type: simple-array

40.2.2.1.2 Description

40.2.3 External Functions


40.2.3.1 Inherited Function: beta-distribution
40.2.3.1.1 Syntax
(beta-distribution shape1 shape2)
40.2.3.1.2 Description
  • Parameters: shape1 shape2

40.2.3.2 Inherited Function: beta-distribution-estimate
40.2.3.2.1 Syntax
(beta-distribution-estimate sequence)
40.2.3.2.2 Description

Estimates by matching moments.


40.2.3.3 Inherited Function: binom-dist-test
40.2.3.3.1 Syntax
(binom-dist-test d x size)
40.2.3.3.2 Description
  • Input: sequence of frequency, sequence of class-value, size of Bernoulli trials
  • Output( 3 values of p-list )
    • result (:D-SIZE total-frequency :PROBABILITY population-rate)
    • table (:FREQ frequency :P probability :E expectation)
    • result2 (:CHI-SQ Chi-square-statistics :D.F. Degree-of-freedom :P-VALUE p-value)

40.2.3.4 Inherited Function: binomial-distribution
40.2.3.4.1 Syntax
(binomial-distribution size probability)
40.2.3.4.2 Description
  • Parameters: size, probability

40.2.3.5 Inherited Function: binomial-distribution-estimate
40.2.3.5.1 Syntax
(binomial-distribution-estimate size successes)
40.2.3.5.2 Description

Maximum likelihood estimate.


40.2.3.6 Inherited Function: cauchy-distribution
40.2.3.6.1 Syntax
(cauchy-distribution location scale)
40.2.3.6.2 Description
  • Parameters: location, scale

40.2.3.7 Inherited Function: cauchy-distribution-estimate
40.2.3.7.1 Syntax
(cauchy-distribution-estimate lst &optional (iterations 100))
40.2.3.7.2 Description

40.2.3.8 Inherited Function: cdf
40.2.3.8.1 Syntax
(cdf distribution x)
40.2.3.8.2 Description

Cumulative distribution function of DISTRIBUTION at X.


40.2.3.9 Inherited Function: chi-square-distribution
40.2.3.9.1 Syntax
(chi-square-distribution freedom)
40.2.3.9.2 Description
  • Parameters: degree
  • Estimators: [none]

40.2.3.10 Inherited Function: correlation-coefficient
40.2.3.10.1 Syntax
(correlation-coefficient seq1 seq2)
40.2.3.10.2 Description

Returns the correlation coefficient of SEQ1 and SEQ2, ie. covariance / (standard-deviation1 * standard-deviation2).


40.2.3.11 Inherited Function: count-values
40.2.3.11.1 Syntax
(count-values seq &key (test #'equal))
40.2.3.11.2 Description

40.2.3.12 Inherited Function: covariance
40.2.3.12.1 Syntax
(covariance seq1 seq2)
40.2.3.12.2 Description

Returns the covariance of SEQ1 and SEQ2.


40.2.3.13 Inherited Function: density
40.2.3.13.1 Syntax
(density continuous-distribution x)
40.2.3.13.2 Description

Density function of DISTRIBUTION at X.


40.2.3.14 Inherited Function: discrete-quantile
40.2.3.14.1 Syntax
(discrete-quantile sequence cuts)
40.2.3.14.2 Description

Returns the quantile(s) of SEQ at the given cut point(s). CUTS can be a single value or a list. (Variant: discrete-quantile-on-sorted (sorted-seq cuts))

The function gives the mean of the two numbers closest to the given ratio if the ratio does not give an exact (whole) position. This is what LISP-STAT does, but returning (LINEAR-COMBINATION (ELT SEQUENCE Q) R (ELT SEQUENCE (1+ Q))) may be better. More on this at http://mathworld.wolfram.com/Quantile.html.

CUTS is a single number or a list of numbers, each in the interval [0,1].


40.2.3.15 Inherited Function: discrete-quantile-on-sorted
40.2.3.15.1 Syntax
(discrete-quantile-on-sorted sequence cuts)
40.2.3.15.2 Description

Returns the quantile(s) of SEQ at the given cut point(s). CUTS can be a single value or a list. (Variant: discrete-quantile-on-sorted (sorted-seq cuts))

The function gives the mean of the two numbers closest to the given ratio if the ratio does not give an exact (whole) position. This is what LISP-STAT does, but returning (LINEAR-COMBINATION (ELT SEQUENCE Q) R (ELT SEQUENCE (1+ Q))) may be better. More on this at http://mathworld.wolfram.com/Quantile.html.

CUTS is a single number or a list of numbers, each in the interval [0,1].


40.2.3.16 Inherited Function: erlang-distribution
40.2.3.16.1 Syntax
(erlang-distribution scale shape)
40.2.3.16.2 Description

40.2.3.17 Inherited Function: erlang-distribution-estimate
40.2.3.17.1 Syntax
(erlang-distribution-estimate sequence)
40.2.3.17.2 Description

Estimates by matching moments.


40.2.3.18 Inherited Function: exponential-distribution
40.2.3.18.1 Syntax
(exponential-distribution scale-or-hazard &optional (hazardp t))
40.2.3.18.2 Description

(EXPONENTIAL-DISTRIBUTION SCALE T) or (EXPONENTIAL-DISTRIBUTION HAZARD).


40.2.3.19 Inherited Function: exponential-distribution-estimate
40.2.3.19.1 Syntax
(exponential-distribution-estimate sequence)
40.2.3.19.2 Description

Unbiased maximum likelihood estimate.


40.2.3.20 Inherited Function: f-distribution
40.2.3.20.1 Syntax
(f-distribution freedom1 freedom2)
40.2.3.20.2 Description
  • Parameters: degree1 degree2
  • Estimators: [none]

40.2.3.21 Inherited Function: five-number-summary
40.2.3.21.1 Syntax
(five-number-summary sequence)
40.2.3.21.2 Description

Returns the


40.2.3.22 Inherited Function: five-number-summary-on-sorted
40.2.3.22.1 Syntax
(five-number-summary-on-sorted sequence)
40.2.3.22.2 Description

Returns the


40.2.3.23 Inherited Function: gamma-distribution
40.2.3.23.1 Syntax
(gamma-distribution scale shape)
40.2.3.23.2 Description
  • Parameters: scale, shape
  • (Variant: erlang-distribution [shape is an integer])
  • Numerical calculation: If there is a numerical problem with QUANTILE, QUANTILE-ILI would be solve it.\ ILI is abbreviation of the numerical calculation method of Inverse-Linear-Interpolation.\ However this is slower than Newton-Raphson(for QUANTILE).

40.2.3.24 Inherited Function: gamma-distribution-estimate
40.2.3.24.1 Syntax
(gamma-distribution-estimate sequence)
40.2.3.24.2 Description

Estimates by matching moments.


40.2.3.25 Inherited Function: geometric-distribution
40.2.3.25.1 Syntax
(geometric-distribution probability)
40.2.3.25.2 Description
  • Parameters: probability
  • (Supported on k = 1, 2, … (the # of trials until a success, inclusive))

40.2.3.26 Inherited Function: geometric-distribution-estimate
40.2.3.26.1 Syntax
(geometric-distribution-estimate trials)
40.2.3.26.2 Description

Maximum likelihood estimate.


40.2.3.27 Inherited Function: hypergeometric-distribution
40.2.3.27.1 Syntax
(hypergeometric-distribution elements successes samples)
40.2.3.27.2 Description

40.2.3.28 Inherited Function: hypergeometric-distribution-estimate-elements
40.2.3.28.1 Syntax
(hypergeometric-distribution-estimate-elements successes samples
                                               sample-successes)
40.2.3.28.2 Description

Maximum likelihood estimation.


40.2.3.29 Inherited Function: hypergeometric-distribution-estimate-successes-maximum-likelihood:function:
40.2.3.29.1 Syntax
(hypergeometric-distribution-estimate-successes-maximum-likelihood elements
                                                                   samples
                                                                   sample-successes)
40.2.3.29.2 Description

40.2.3.30 Inherited Function: hypergeometric-distribution-estimate-successes-unbiased:function:
40.2.3.30.1 Syntax
(hypergeometric-distribution-estimate-successes-unbiased elements samples
                                                         sample-successes)
40.2.3.30.2 Description

40.2.3.31 Inherited Function: interquartile-range
40.2.3.31.1 Syntax
(interquartile-range sequence)
40.2.3.31.2 Description

40.2.3.32 Inherited Function: interquartile-range-on-sorted
40.2.3.32.1 Syntax
(interquartile-range-on-sorted sequence)
40.2.3.32.2 Description

40.2.3.33 Inherited Function: kendall-rank-correlation
40.2.3.33.1 Syntax
(kendall-rank-correlation seq1 seq2)
40.2.3.33.2 Description

Returns the Kendall


40.2.3.34 Inherited Function: linear-regression
40.2.3.34.1 Syntax
(linear-regression seq1 seq2)
40.2.3.34.2 Description

Fits a line y = A + Bx on the data points from SEQ1 x SEQ2. Returns (A B).


40.2.3.35 Inherited Function: log-normal-distribution
40.2.3.35.1 Syntax
(log-normal-distribution average std)
40.2.3.35.2 Description
  • Parameters: expected-value, deviation
  • Estimators: log-normal-distribution-estimate-unbiased, log-normal-distribution-estimate-maximum-likelihood

40.2.3.36 Inherited Function: log-normal-distribution-estimate-maximum-likelihood:function:
40.2.3.36.1 Syntax
(log-normal-distribution-estimate-maximum-likelihood lst)
40.2.3.36.2 Description

40.2.3.37 Inherited Function: log-normal-distribution-estimate-unbiased
40.2.3.37.1 Syntax
(log-normal-distribution-estimate-unbiased lst)
40.2.3.37.2 Description

40.2.3.38 Inherited Function: logistic-distribution
40.2.3.38.1 Syntax
(logistic-distribution location scale)
40.2.3.38.2 Description
  • Parameters: location, scale

40.2.3.39 Inherited Function: logistic-distribution-estimate
40.2.3.39.1 Syntax
(logistic-distribution-estimate sequence &optional (iteration 100)
                                (tolerance 1.e-10))
40.2.3.39.2 Description

Maximal likelihood estimate.


40.2.3.40 Inherited Function: mean
40.2.3.40.1 Syntax
(mean obj)
40.2.3.40.2 Description

Returns the mean of SEQ.


40.2.3.41 Inherited Function: mean-deviation
40.2.3.41.1 Syntax
(mean-deviation sequence)
40.2.3.41.2 Description

Returns the mean deviation of SEQ.


40.2.3.42 Inherited Function: median
40.2.3.42.1 Syntax
(median sequence)
40.2.3.42.2 Description

Returns the median of SEQ. (Variant: median-on-sorted (sorted-seq))


40.2.3.43 Inherited Function: median-on-sorted
40.2.3.43.1 Syntax
(median-on-sorted sequence)
40.2.3.43.2 Description

Returns the median of SEQ. (Variant: median-on-sorted (sorted-seq))


40.2.3.44 Inherited Function: mode
40.2.3.44.1 Syntax
(mode obj &optional test)
40.2.3.44.2 Description

40.2.3.45 Inherited Function: negative-binomial-distribution
40.2.3.45.1 Syntax
(negative-binomial-distribution successes probability)
40.2.3.45.2 Description
  • Parameters: successes, probability, failuresp
  • Estimators: negative-binomial-distribution-estimate-unbiased, negative-binomial-distribution-estimate-maximum-likelihood
  • When failuresp is NIL, the distribution is supported on k = s, s+1, … (the # of trials until a given number of successes, inclusive))
  • When failuresp is T (the default), it is supported on k = 0, 1, … (the # of failures until a given number of successes, inclusive)
  • Estimators also have the failuresp parameter
  • (Variant: geometric-distribution [successes = 1, failuresp = nil])

Number of failures until a given number of successes, extended to real numbers. If FAILURESP is NIL, we look at the number of all trials, not just the failures.


40.2.3.46 Inherited Function: negative-binomial-distribution-estimate-maximum-likelihood:function:
40.2.3.46.1 Syntax
(negative-binomial-distribution-estimate-maximum-likelihood successes trials)
40.2.3.46.2 Description

Estimate based on the number of successes in a given number of trials. FAILURESP works as in NEGATIVE-BINOMIAL-DISTRIBUTION.


40.2.3.47 Inherited Function: negative-binomial-distribution-estimate-unbiased:function:
40.2.3.47.1 Syntax
(negative-binomial-distribution-estimate-unbiased successes trials)
40.2.3.47.2 Description

Estimate based on the number of successes in a given number of trials. FAILURESP works as in NEGATIVE-BINOMIAL-DISTRIBUTION.


40.2.3.48 Inherited Function: normal-dist-test
40.2.3.48.1 Syntax
(normal-dist-test freq-seq inf width precision)
40.2.3.48.2 Description
  • Input: frequation sequence, infimum of the first class, class width, precision
  • Output( 3 values of property-list )
    • result (:TOTAL total-frequency :MEAN mean :VARIANCE variance :SD standard-deviation)
    • table (:MID mid-value-of-each-class :FREQ frequency-of-each-class :Z standard-score :CDF cummulative-distribution-frequency :EXPECTATION expectation)
    • result2 (:CHI-SQ Chi-square-statistics :D.F. Degree-of-freedom :P-VALUE p-value)

40.2.3.49 Inherited Function: normal-distribution
40.2.3.49.1 Syntax
(normal-distribution average std)
40.2.3.49.2 Description
  • Parameters: expected-value, deviation
  • Estimators: normal-distribution-estimate-unbiased, normal-distribution-estimate-maximum-likelihood
  • (Variant: standard-normal-distribution)

40.2.3.50 Inherited Function: normal-distribution-estimate-maximum-likelihood
40.2.3.50.1 Syntax
(normal-distribution-estimate-maximum-likelihood sequence)
40.2.3.50.2 Description

40.2.3.51 Inherited Function: normal-distribution-estimate-unbiased
40.2.3.51.1 Syntax
(normal-distribution-estimate-unbiased sequence)
40.2.3.51.2 Description

40.2.3.52 Inherited Function: poisson-dist-test
40.2.3.52.1 Syntax
(poisson-dist-test d)
40.2.3.52.2 Description
  • Input: sequence of frequency
  • Output( 3 values of p-list )
    • result (:N total-frequency :MEAN mean)
    • table (:C-ID assumed-class-value :FREQ frequency :P probability :E expectation)
    • result2 (:CHI-SQ Chi-square-statistics :D.F. Degree-of-freedom :P-VALUE p-value)

40.2.3.53 Inherited Function: poisson-distribution
40.2.3.53.1 Syntax
(poisson-distribution rate)
40.2.3.53.2 Description
  • Parameters: rate

40.2.3.54 Inherited Function: poisson-distribution-estimate
40.2.3.54.1 Syntax
(poisson-distribution-estimate sequence)
40.2.3.54.2 Description

Maximum likelihood estimate, also unbiased and minimum variance.


40.2.3.55 Inherited Function: quantile
40.2.3.55.1 Syntax
(quantile distribution p)
40.2.3.55.2 Description

Quantile of P according to DISTRIBUTION.


40.2.3.56 Inherited Function: quantile-ili
40.2.3.56.1 Syntax
(quantile-ili distribution p)
40.2.3.56.2 Description

40.2.3.57 Inherited Function: rand
40.2.3.57.1 Syntax
(rand distribution)
40.2.3.57.2 Description

Gives a random number according to DISTRIBUTION.


40.2.3.58 Inherited Function: rand-n
40.2.3.58.1 Syntax
(rand-n distribution n)
40.2.3.58.2 Description

N random numbers according to DISTRIBUTION.


40.2.3.59 Inherited Function: range
40.2.3.59.1 Syntax
(range sequence)
40.2.3.59.2 Description

Returns the interquartile range of SEQ, ie. the difference of the discrete quantiles at 3/4 and 1/4. (Variant: interquartile-range-on-sorted (sorted-seq))


40.2.3.60 Inherited Function: smirnov-grubbs
40.2.3.60.1 Syntax
(smirnov-grubbs seq alpha &key (type max) (recursive nil) (sig-p-hash nil))
40.2.3.60.2 Description
40.2.3.60.2.0.0.1 smirnov-grubbs (seq alpha &key (type :max) (recursive nil))

Smirnov-Grubbs method for outlier verification.

length of seq must be more than 4


40.2.3.61 Inherited Function: smirnov-grubbs-p
40.2.3.61.1 Syntax
(smirnov-grubbs-p seq position alpha &key (sig-p-hash nil))
40.2.3.61.2 Description

40.2.3.62 Inherited Function: spearman-rank-correlation
40.2.3.62.1 Syntax
(spearman-rank-correlation seq1 seq2)
40.2.3.62.2 Description

Gives the correlation coefficient based on just the relative size of the given values.


40.2.3.63 Inherited Function: standard-deviation
40.2.3.63.1 Syntax
(standard-deviation sequence &key populationp)
40.2.3.63.2 Description

Sample standard deviation; or population standard deviation if POPULATIONP.


40.2.3.64 Inherited Function: standard-normal-distribution
40.2.3.64.1 Syntax
(standard-normal-distribution)
40.2.3.64.2 Description

40.2.3.65 Inherited Function: standard-uniform-distribution
40.2.3.65.1 Syntax
(standard-uniform-distribution)
40.2.3.65.2 Description

40.2.3.66 Inherited Function: t-distribution
40.2.3.66.1 Syntax
(t-distribution freedom)
40.2.3.66.2 Description
  • Parameters: degree
  • Estimators: [none]

40.2.3.67 Inherited Function: uniform-distribution
40.2.3.67.1 Syntax
(uniform-distribution from to)
40.2.3.67.2 Description
  • Parameters: from, to
  • Estimators: uniform-distribution-estimate-moments, uniform-distribution-estimate-maximum-likelihood
  • (Variant: standard-uniform-distribution)

40.2.3.68 Inherited Function: uniform-distribution-estimate-maximum-likelihood:function:
40.2.3.68.1 Syntax
(uniform-distribution-estimate-maximum-likelihood sequence)
40.2.3.68.2 Description

40.2.3.69 Inherited Function: uniform-distribution-estimate-moments
40.2.3.69.1 Syntax
(uniform-distribution-estimate-moments sequence)
40.2.3.69.2 Description

40.2.3.70 Inherited Function: variance
40.2.3.70.1 Syntax
(variance obj)
40.2.3.70.2 Description

40.2.3.71 Inherited Function: weibull-distribution
40.2.3.71.1 Syntax
(weibull-distribution scale shape)
40.2.3.71.2 Description
  • Parameters: scale, shape

40.2.3.72 Inherited Function: weibull-distribution-estimate
40.2.3.72.1 Syntax
(weibull-distribution-estimate sequence)
40.2.3.72.2 Description

Maximum likelihood estimate.

40.3 Ambiguous Symbols

40.3.1 Cauchy-Distribution

Disambiguation.

  • Function: cauchy-distribution
  • Class: cauchy-distribution

40.3.2 Hypergeometric-Distribution

Disambiguation.

  • Function: hypergeometric distribution
  • Class: hypergeometric-distribution

40.3.3 Log-Normal-Distribution

Disambiguation.

  • Function: log-normal-distribution
  • Class: log-normal-distribution

40.3.4 Logistic-Distribution

Disambiguation.

  • Function: logistic-distribution
  • Class: logistic-distribution

40.3.5 T-Distribution

Disambiguation.

  • Function: t-distribution
  • Class: t-distribution

40.3.6 Beta-Distribution

Disambiguation.

  • Function: beta-distribution
  • Class: beta-distribution

40.3.7 Binomial-Distribution

Disambiguation.

  • Function: binomial-distribution
  • Class: binomial-distribution

40.3.8 Covariance

Disambiguation.

  • Function: covariance
  • Class: covariance

40.3.9 Gamma-Distribution

Disambiguation.

  • Function: gamma-distribution
  • Class: gamma-distribution

40.3.10 Negative-Binomial-Distribution

Disambiguation.

  • Function: negative-binomial distribution
  • Class: negative-binomial distribution

40.3.11 Normal-Distribution

Disambiguation.

  • Function: normal-distribution
  • Class: normal-distribution

40.3.12 F-Distribution

Disambiguation.

  • Function: f-distribution
  • Class: f-distribution

40.3.13 Geometric-Distribution

Disambiguation.

  • Function: geometric-distribution
  • Class: geometric-distribution

40.3.14 Chi-Square-Distribution

Disambiguation.

  • Function: chi-square-distribution
  • Class: chi-square-distribution

40.3.15 Poisson-Distribution

Disambiguation.

  • Function: poisson-distribution
  • Class: poisson-distribution

40.3.16 Mean

Disambiguation.

  • Variable: mean
  • Function: mean

40.3.17 Weibull-Distribution

Disambiguation.

  • Function: weibull-distribution
  • Class: weibull-distribution

40.3.18 Uniform-Distribution

Disambiguation.

  • Function: uniform-distribution
  • Class: uniform-distribution

40.3.19 Rand

Disambiguation.

  • Function: rand
  • Package: rand

40.3.20 Exponential-Distribution

Disambiguation.

  • Function: exponential-distribution
  • Class: exponential-distribution

40.3.21 Erlang-Distribution

Disambiguation.

  • Function: erlang-distribution
  • Class: erlang-distribution

41 Package: clml.statistics.rand

  • Uses: common-lisp
  • Used by: clml.statistics

41.1 Description

41.2 External Symbols

41.2.1 External Constants


41.2.1.1 Constant: +bit-operation-m+
41.2.1.1.1 Value
62

Type: integer

41.2.1.1.2 Description

41.2.2 External Macros


41.2.2.1 Internal Macro: dfloat
41.2.2.1.1 Syntax
(dfloat x)
41.2.2.1.2 Description

41.2.3 External Functions


41.2.3.1 Function: arcsine-inverse
41.2.3.1.1 Syntax
(arcsine-inverse)
41.2.3.1.2 Description

41.2.3.2 Function: arcsine-polar
41.2.3.2.1 Syntax
(arcsine-polar)
41.2.3.2.2 Description

41.2.3.3 Function: arcsine-random
41.2.3.3.1 Syntax
(arcsine-random)
41.2.3.3.2 Description

41.2.3.4 Function: bernoulli
41.2.3.4.1 Syntax
(bernoulli)
41.2.3.4.2 Description

41.2.3.5 Function: beta-random
41.2.3.5.1 Syntax
(beta-random)
41.2.3.5.2 Description

41.2.3.6 Function: binomial-convolution
41.2.3.6.1 Syntax
(binomial-convolution)
41.2.3.6.2 Description

41.2.3.7 Function: binomial-convolution-coinflip
41.2.3.7.1 Syntax
(binomial-convolution-coinflip)
41.2.3.7.2 Description

41.2.3.8 Function: binomial-convolution-recycle
41.2.3.8.1 Syntax
(binomial-convolution-recycle)
41.2.3.8.2 Description

41.2.3.9 Function: binomial-convolution-recycle-cached
41.2.3.9.1 Syntax
(binomial-convolution-recycle-cached)
41.2.3.9.2 Description

41.2.3.10 Function: binomial-inverse
41.2.3.10.1 Syntax
(binomial-inverse)
41.2.3.10.2 Description

41.2.3.11 Function: binomial-inverse-cached
41.2.3.11.1 Syntax
(binomial-inverse-cached)
41.2.3.11.2 Description

41.2.3.12 Function: binomial-inverse-mode
41.2.3.12.1 Syntax
(binomial-inverse-mode)
41.2.3.12.2 Description

41.2.3.13 Function: binomial-inverse-mode-cached
41.2.3.13.1 Syntax
(binomial-inverse-mode-cached)
41.2.3.13.2 Description

41.2.3.14 Function: binomial-random
41.2.3.14.1 Syntax
(binomial-random)
41.2.3.14.2 Description

41.2.3.15 Function: binomial-table
41.2.3.15.1 Syntax
(binomial-table)
41.2.3.15.2 Description

41.2.3.16 Function: binomial-table-histogram
41.2.3.16.1 Syntax
(binomial-table-histogram)
41.2.3.16.2 Description

41.2.3.17 Function: binomial-table-histogram-lookup
41.2.3.17.1 Syntax
(binomial-table-histogram-lookup)
41.2.3.17.2 Description

41.2.3.18 Function: binomial-table-lookup
41.2.3.18.1 Syntax
(binomial-table-lookup)
41.2.3.18.2 Description

41.2.3.19 Function: box-muller
41.2.3.19.1 Syntax
(box-muller)
41.2.3.19.2 Description

41.2.3.20 Function: cauchy-inverse
41.2.3.20.1 Syntax
(cauchy-inverse)
41.2.3.20.2 Description

41.2.3.21 Function: cauchy-monty-python
41.2.3.21.1 Syntax
(cauchy-monty-python)
41.2.3.21.2 Description

41.2.3.22 Function: cauchy-monty-python-bit
41.2.3.22.1 Syntax
(cauchy-monty-python-bit)
41.2.3.22.2 Description

41.2.3.23 Function: cauchy-polar
41.2.3.23.1 Syntax
(cauchy-polar)
41.2.3.23.2 Description

41.2.3.24 Function: cauchy-polar-gauss
41.2.3.24.1 Syntax
(cauchy-polar-gauss)
41.2.3.24.2 Description

41.2.3.25 Function: cauchy-random
41.2.3.25.1 Syntax
(cauchy-random)
41.2.3.25.2 Description

41.2.3.26 Function: cauchy-ziggurat-bit
41.2.3.26.1 Syntax
(cauchy-ziggurat-bit)
41.2.3.26.2 Description

41.2.3.27 Function: chi-square-convolution
41.2.3.27.1 Syntax
(chi-square-convolution)
41.2.3.27.2 Description

41.2.3.28 Function: chi-square-random
41.2.3.28.1 Syntax
(chi-square-random)
41.2.3.28.2 Description

41.2.3.29 Function: combination
41.2.3.29.1 Syntax
(combination)
41.2.3.29.2 Description

41.2.3.30 Function: erlang-convolution
41.2.3.30.1 Syntax
(erlang-convolution)
41.2.3.30.2 Description

41.2.3.31 Function: erlang-convolution-include-zero
41.2.3.31.1 Syntax
(erlang-convolution-include-zero)
41.2.3.31.2 Description

41.2.3.32 Function: erlang-random
41.2.3.32.1 Syntax
(erlang-random)
41.2.3.32.2 Description

41.2.3.33 Function: exp-inverse
41.2.3.33.1 Syntax
(exp-inverse)
41.2.3.33.2 Description

41.2.3.34 Function: exp-inverse-include-zero
41.2.3.34.1 Syntax
(exp-inverse-include-zero)
41.2.3.34.2 Description

41.2.3.35 Function: exp-random
41.2.3.35.1 Syntax
(exp-random)
41.2.3.35.2 Description

41.2.3.36 Function: exp-ziggurat-bit
41.2.3.36.1 Syntax
(exp-ziggurat-bit)
41.2.3.36.2 Description

41.2.3.37 Function: exp-ziggurat-bit-include-zero
41.2.3.37.1 Syntax
(exp-ziggurat-bit-include-zero)
41.2.3.37.2 Description

41.2.3.38 Function: f-random
41.2.3.38.1 Syntax
(f-random)
41.2.3.38.2 Description

41.2.3.39 Function: f-random-cached
41.2.3.39.1 Syntax
(f-random-cached)
41.2.3.39.2 Description

41.2.3.40 Function: gamma-compression
41.2.3.40.1 Syntax
(gamma-compression)
41.2.3.40.2 Description

41.2.3.41 Function: gamma-compression-shape-big
41.2.3.41.1 Syntax
(gamma-compression-shape-big)
41.2.3.41.2 Description

41.2.3.42 Function: gamma-compression-shape-big-cached
41.2.3.42.1 Syntax
(gamma-compression-shape-big-cached)
41.2.3.42.2 Description

41.2.3.43 Function: gamma-compression-shape-small
41.2.3.43.1 Syntax
(gamma-compression-shape-small)
41.2.3.43.2 Description

41.2.3.44 Function: gamma-compression-shape-small-cached
41.2.3.44.1 Syntax
(gamma-compression-shape-small-cached)
41.2.3.44.2 Description

41.2.3.45 Function: gamma-inverse
41.2.3.45.1 Syntax
(gamma-inverse)
41.2.3.45.2 Description

41.2.3.46 Function: gamma-inverse-shape-big
41.2.3.46.1 Syntax
(gamma-inverse-shape-big)
41.2.3.46.2 Description

41.2.3.47 Function: gamma-inverse-shape-big-cached
41.2.3.47.1 Syntax
(gamma-inverse-shape-big-cached)
41.2.3.47.2 Description

41.2.3.48 Function: gamma-inverse-shape-small
41.2.3.48.1 Syntax
(gamma-inverse-shape-small)
41.2.3.48.2 Description

41.2.3.49 Function: gamma-inverse-shape-small-cached
41.2.3.49.1 Syntax
(gamma-inverse-shape-small-cached)
41.2.3.49.2 Description

41.2.3.50 Function: gamma-random
41.2.3.50.1 Syntax
(gamma-random)
41.2.3.50.2 Description

41.2.3.51 Function: gauss-half-ziggurat-bit
41.2.3.51.1 Syntax
(gauss-half-ziggurat-bit)
41.2.3.51.2 Description

41.2.3.52 Function: gauss-monty-python
41.2.3.52.1 Syntax
(gauss-monty-python)
41.2.3.52.2 Description

41.2.3.53 Function: gauss-monty-python-bit
41.2.3.53.1 Syntax
(gauss-monty-python-bit)
41.2.3.53.2 Description

41.2.3.54 Function: gauss-polar
41.2.3.54.1 Syntax
(gauss-polar)
41.2.3.54.2 Description

41.2.3.55 Function: gauss-ziggurat
41.2.3.55.1 Syntax
(gauss-ziggurat)
41.2.3.55.2 Description

41.2.3.56 Function: gauss-ziggurat-bit
41.2.3.56.1 Syntax
(gauss-ziggurat-bit)
41.2.3.56.2 Description

41.2.3.57 Function: geometric-bernoulli
41.2.3.57.1 Syntax
(geometric-bernoulli)
41.2.3.57.2 Description

41.2.3.58 Function: geometric-bernoulli-coinflip
41.2.3.58.1 Syntax
(geometric-bernoulli-coinflip)
41.2.3.58.2 Description

41.2.3.59 Function: geometric-bernoulli-recycle
41.2.3.59.1 Syntax
(geometric-bernoulli-recycle)
41.2.3.59.2 Description

41.2.3.60 Function: geometric-bernoulli-recycle-cached
41.2.3.60.1 Syntax
(geometric-bernoulli-recycle-cached)
41.2.3.60.2 Description

41.2.3.61 Function: geometric-inverse
41.2.3.61.1 Syntax
(geometric-inverse)
41.2.3.61.2 Description

41.2.3.62 Function: geometric-inverse-cached
41.2.3.62.1 Syntax
(geometric-inverse-cached)
41.2.3.62.2 Description

41.2.3.63 Function: geometric-inverse-exp
41.2.3.63.1 Syntax
(geometric-inverse-exp)
41.2.3.63.2 Description

41.2.3.64 Function: geometric-inverse-exp-cached
41.2.3.64.1 Syntax
(geometric-inverse-exp-cached)
41.2.3.64.2 Description

41.2.3.65 Function: geometric-random
41.2.3.65.1 Syntax
(geometric-random)
41.2.3.65.2 Description

41.2.3.66 Function: geometric-table-histogram
41.2.3.66.1 Syntax
(geometric-table-histogram)
41.2.3.66.2 Description

41.2.3.67 Function: geometric-table-histogram-lookup
41.2.3.67.1 Syntax
(geometric-table-histogram-lookup)
41.2.3.67.2 Description

41.2.3.68 Function: half-integer-power
41.2.3.68.1 Syntax
(half-integer-power)
41.2.3.68.2 Description

41.2.3.69 Function: half-normal-random
41.2.3.69.1 Syntax
(half-normal-random)
41.2.3.69.2 Description

41.2.3.70 Function: hypergeometric-inverse
41.2.3.70.1 Syntax
(hypergeometric-inverse)
41.2.3.70.2 Description

41.2.3.71 Function: hypergeometric-inverse-cached
41.2.3.71.1 Syntax
(hypergeometric-inverse-cached)
41.2.3.71.2 Description

41.2.3.72 Function: hypergeometric-inverse-mode
41.2.3.72.1 Syntax
(hypergeometric-inverse-mode)
41.2.3.72.2 Description

41.2.3.73 Function: hypergeometric-inverse-mode-cached
41.2.3.73.1 Syntax
(hypergeometric-inverse-mode-cached)
41.2.3.73.2 Description

41.2.3.74 Function: hypergeometric-random
41.2.3.74.1 Syntax
(hypergeometric-random)
41.2.3.74.2 Description

41.2.3.75 Function: hypergeometric-simulate
41.2.3.75.1 Syntax
(hypergeometric-simulate)
41.2.3.75.2 Description

41.2.3.76 Function: hypergeometric-table-histogram
41.2.3.76.1 Syntax
(hypergeometric-table-histogram)
41.2.3.76.2 Description

41.2.3.77 Function: hypergeometric-table-histogram-lookup
41.2.3.77.1 Syntax
(hypergeometric-table-histogram-lookup)
41.2.3.77.2 Description

41.2.3.78 Function: int-power
41.2.3.78.1 Syntax
(int-power)
41.2.3.78.2 Description

41.2.3.79 Function: laplace-inverse
41.2.3.79.1 Syntax
(laplace-inverse)
41.2.3.79.2 Description

41.2.3.80 Function: laplace-ziggurat-bit
41.2.3.80.1 Syntax
(laplace-ziggurat-bit)
41.2.3.80.2 Description

41.2.3.81 Function: left-triangular-compare
41.2.3.81.1 Syntax
(left-triangular-compare)
41.2.3.81.2 Description

41.2.3.82 Function: left-triangular-compare-cached
41.2.3.82.1 Syntax
(left-triangular-compare-cached)
41.2.3.82.2 Description

41.2.3.83 Function: left-triangular-inverse
41.2.3.83.1 Syntax
(left-triangular-inverse)
41.2.3.83.2 Description

41.2.3.84 Function: left-triangular-inverse-cached
41.2.3.84.1 Syntax
(left-triangular-inverse-cached)
41.2.3.84.2 Description

41.2.3.85 Function: left-triangular-random
41.2.3.85.1 Syntax
(left-triangular-random a b)
41.2.3.85.2 Description

41.2.3.86 Function: logistic-inverse
41.2.3.86.1 Syntax
(logistic-inverse)
41.2.3.86.2 Description

41.2.3.87 Function: logistic-random
41.2.3.87.1 Syntax
(logistic-random)
41.2.3.87.2 Description

41.2.3.88 Function: logistic-ziggurat-bit
41.2.3.88.1 Syntax
(logistic-ziggurat-bit)
41.2.3.88.2 Description

41.2.3.89 Function: negative-binomial-compose
41.2.3.89.1 Syntax
(negative-binomial-compose)
41.2.3.89.2 Description

41.2.3.90 Function: negative-binomial-compose-cached
41.2.3.90.1 Syntax
(negative-binomial-compose-cached)
41.2.3.90.2 Description

41.2.3.91 Function: negative-binomial-convolution-integer
41.2.3.91.1 Syntax
(negative-binomial-convolution-integer)
41.2.3.91.2 Description

41.2.3.92 Function: negative-binomial-inverse
41.2.3.92.1 Syntax
(negative-binomial-inverse)
41.2.3.92.2 Description

41.2.3.93 Function: negative-binomial-inverse-cached
41.2.3.93.1 Syntax
(negative-binomial-inverse-cached)
41.2.3.93.2 Description

41.2.3.94 Function: negative-binomial-inverse-mode
41.2.3.94.1 Syntax
(negative-binomial-inverse-mode)
41.2.3.94.2 Description

41.2.3.95 Function: negative-binomial-inverse-mode-cached
41.2.3.95.1 Syntax
(negative-binomial-inverse-mode-cached)
41.2.3.95.2 Description

41.2.3.96 Function: negative-binomial-random
41.2.3.96.1 Syntax
(negative-binomial-random)
41.2.3.96.2 Description

41.2.3.97 Function: negative-binomial-table-histogram
41.2.3.97.1 Syntax
(negative-binomial-table-histogram)
41.2.3.97.2 Description

41.2.3.98 Function: negative-binomial-table-histogram-lookup
41.2.3.98.1 Syntax
(negative-binomial-table-histogram-lookup)
41.2.3.98.2 Description

41.2.3.99 Internal Function: normal-random
41.2.3.99.1 Syntax
(normal-random)
41.2.3.99.2 Description

41.2.3.100 Function: poisson-inverse
41.2.3.100.1 Syntax
(poisson-inverse)
41.2.3.100.2 Description

41.2.3.101 Function: poisson-inverse-cached
41.2.3.101.1 Syntax
(poisson-inverse-cached)
41.2.3.101.2 Description

41.2.3.102 Function: poisson-inverse-mode
41.2.3.102.1 Syntax
(poisson-inverse-mode)
41.2.3.102.2 Description

41.2.3.103 Function: poisson-inverse-mode-cached
41.2.3.103.1 Syntax
(poisson-inverse-mode-cached)
41.2.3.103.2 Description

41.2.3.104 Function: poisson-random
41.2.3.104.1 Syntax
(poisson-random)
41.2.3.104.2 Description

41.2.3.105 Function: poisson-simulate
41.2.3.105.1 Syntax
(poisson-simulate)
41.2.3.105.2 Description

41.2.3.106 Function: poisson-simulate-cached
41.2.3.106.1 Syntax
(poisson-simulate-cached)
41.2.3.106.2 Description

41.2.3.107 Function: poisson-simulate-exp
41.2.3.107.1 Syntax
(poisson-simulate-exp)
41.2.3.107.2 Description

41.2.3.108 Function: poisson-table-histogram
41.2.3.108.1 Syntax
(poisson-table-histogram)
41.2.3.108.2 Description

41.2.3.109 Function: poisson-table-histogram-lookup
41.2.3.109.1 Syntax
(poisson-table-histogram-lookup)
41.2.3.109.2 Description

41.2.3.110 Function: power-function-inverse
41.2.3.110.1 Syntax
(power-function-inverse)
41.2.3.110.2 Description

41.2.3.111 Function: power-function-inverse-cached
41.2.3.111.1 Syntax
(power-function-inverse-cached)
41.2.3.111.2 Description

41.2.3.112 Function: power-function-random
41.2.3.112.1 Syntax
(power-function-random)
41.2.3.112.2 Description

41.2.3.113 Function: power-function-with-gamma
41.2.3.113.1 Syntax
(power-function-with-gamma)
41.2.3.113.2 Description

41.2.3.114 Function: power-function-with-gamma-cached
41.2.3.114.1 Syntax
(power-function-with-gamma-cached)
41.2.3.114.2 Description

41.2.3.115 Function: right-triangular-compare
41.2.3.115.1 Syntax
(right-triangular-compare)
41.2.3.115.2 Description

41.2.3.116 Function: right-triangular-compare-cached
41.2.3.116.1 Syntax
(right-triangular-compare-cached)
41.2.3.116.2 Description

41.2.3.117 Function: right-triangular-inverse
41.2.3.117.1 Syntax
(right-triangular-inverse)
41.2.3.117.2 Description

41.2.3.118 Function: right-triangular-inverse-cached
41.2.3.118.1 Syntax
(right-triangular-inverse-cached)
41.2.3.118.2 Description

41.2.3.119 Function: right-triangular-random
41.2.3.119.1 Syntax
(right-triangular-random a b)
41.2.3.119.2 Description

41.2.3.120 Function: t-compression
41.2.3.120.1 Syntax
(t-compression)
41.2.3.120.2 Description

41.2.3.121 Function: t-compression-cached
41.2.3.121.1 Syntax
(t-compression-cached)
41.2.3.121.2 Description

41.2.3.122 Function: t-monty-python
41.2.3.122.1 Syntax
(t-monty-python)
41.2.3.122.2 Description

41.2.3.123 Function: t-monty-python-bit
41.2.3.123.1 Syntax
(t-monty-python-bit)
41.2.3.123.2 Description

41.2.3.124 Function: t-monty-python-bit-cached
41.2.3.124.1 Syntax
(t-monty-python-bit-cached)
41.2.3.124.2 Description

41.2.3.125 Function: t-monty-python-cached
41.2.3.125.1 Syntax
(t-monty-python-cached)
41.2.3.125.2 Description

41.2.3.126 Function: t-random
41.2.3.126.1 Syntax
(t-random)
41.2.3.126.2 Description

41.2.3.127 Function: t-with-gamma
41.2.3.127.1 Syntax
(t-with-gamma)
41.2.3.127.2 Description

41.2.3.128 Function: t-with-gamma-cached
41.2.3.128.1 Syntax
(t-with-gamma-cached)
41.2.3.128.2 Description

41.2.3.129 Function: test-random-moment
41.2.3.129.1 Syntax
(test-random-moment fn &optional (times 10000000))
41.2.3.129.2 Description

41.2.3.130 Function: unit-random
41.2.3.130.1 Syntax
(unit-random &optional mode)
41.2.3.130.2 Description

A random number in the range [0, 1), (0, 1], [0, 1] or (0, 1).


41.2.3.131 Function: weibull-inverse
41.2.3.131.1 Syntax
(weibull-inverse)
41.2.3.131.2 Description

41.2.3.132 Function: weibull-inverse-cached
41.2.3.132.1 Syntax
(weibull-inverse-cached)
41.2.3.132.2 Description

41.2.3.133 Function: weibull-random
41.2.3.133.1 Syntax
(weibull-random)
41.2.3.133.2 Description

42 Package: clml.svm.mu

  • Uses: common-lisp, hjs.util.meta
  • Used by: clml.test

42.1 Description

support vector machine package

Iterative solution, as in Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines, F. Sha, L. K. Saul, D. D. Lee. and the sum constraint is described in Multiplicative Updates for Large Margin Classifiers, F. Sha, L. K. Saul, D. D. Lee.

A nice and clear explanation of SVMs can be found in Support Vector Machines Explained, Tristan Fletcher, 2008

42.2 External Symbols

42.2.1 External Classes


42.2.1.1 Inherited Class: kernel
42.2.1.1.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: kernel, standard-object, slot-object, t
  • Direct subclasses: sigmoid-kernel, radial kernel, polynomial-kernel
42.2.1.1.2 Description
42.2.1.1.3 Direct Slots
42.2.1.1.3.1 Slot: biasedp
  • Value type: t
  • Initial value: NIL
  • Initargs: biasedp
  • Allocation: instance
42.2.1.1.3.1.1 Accessors

42.2.1.1.3.1.1.1 Slot Accessor: biasedp
42.2.1.1.3.1.1.1.1 Syntax
(biasedp object)
42.2.1.1.3.1.1.1.2 Methods
  • (biasedp (kernel kernel))

42.2.1.2 Inherited Class: polynomial-kernel
42.2.1.2.1 Inheritance
  • Parent classes: kernel
  • Precedence list: polynomial-kernel, kernel, standard-object, slot-object, t
  • Direct subclasses: None.
42.2.1.2.2 Description
  • reader:
    • dimension
    • homogeneousp
  • generator:
    • polynomial-kernel (dimension homogeneousp)
42.2.1.2.3 Direct Slots
42.2.1.2.3.1 Slot: biasedp
  • Value type: t
  • Initial value: T
  • Initargs: none
  • Allocation: instance
42.2.1.2.3.2 Internal Slot: dimension
  • Value type: t
  • Initial value: NIL
  • Initargs: dimension
  • Allocation: instance
42.2.1.2.3.2.1 Accessors

42.2.1.2.3.2.1.1 Internal Slot Accessor: dimension
42.2.1.2.3.2.1.1.1 Syntax
(dimension object)
42.2.1.2.3.2.1.1.2 Methods
  • (dimension (polynomial-kernel polynomial-kernel))
42.2.1.2.3.3 Slot: homogeneousp
  • Value type: t
  • Initial value: NIL
  • Initargs: homogeneousp
  • Allocation: instance
42.2.1.2.3.3.1 Accessors

42.2.1.2.3.3.1.1 Slot Accessor: homogeneousp
42.2.1.2.3.3.1.1.1 Syntax
(homogeneousp object)
42.2.1.2.3.3.1.1.2 Methods
  • (homogeneousp (polynomial-kernel polynomial-kernel))

42.2.1.3 Inherited Class: radial-kernel
42.2.1.3.1 Inheritance
  • Parent classes: kernel
  • Precedence list: radial-kernel, kernel, standard-object, slot-object, t
  • Direct subclasses: None.
42.2.1.3.2 Description
  • reader:
    • gamma : <number> above 0
  • generator:
    • radial-kernel (gamma)
    • gaussian-kernel (sigma2)
42.2.1.3.3 Direct Slots
42.2.1.3.3.1 Slot: biasedp
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance
42.2.1.3.3.2 Slot: gamma
  • Value type: t
  • Initial value: NIL
  • Initargs: gamma
  • Allocation: instance
42.2.1.3.3.2.1 Accessors

42.2.1.3.3.2.1.1 Slot Accessor: gamma
42.2.1.3.3.2.1.1.1 Syntax
(gamma object)
42.2.1.3.3.2.1.1.2 Methods
  • (gamma (radial-kernel radial-kernel))

42.2.1.4 Inherited Class: sigmoid-kernel
42.2.1.4.1 Inheritance
  • Parent classes: kernel
  • Precedence list: sigmoid-kernel, kernel, standard-object, slot-object, t
  • Direct subclasses: None.
42.2.1.4.2 Description
  • reader:
    • kappa : <number>
    • shift : <number>
  • generator:
    • sigmoid-kernel (kappa shift)
42.2.1.4.3 Direct Slots
42.2.1.4.3.1 Slot: biasedp
  • Value type: t
  • Initial value: T
  • Initargs: none
  • Allocation: instance
42.2.1.4.3.2 Slot: kappa
  • Value type: t
  • Initial value: NIL
  • Initargs: kappa
  • Allocation: instance
42.2.1.4.3.2.1 Accessors

42.2.1.4.3.2.1.1 Slot Accessor: kappa
42.2.1.4.3.2.1.1.1 Syntax
(kappa object)
42.2.1.4.3.2.1.1.2 Methods
  • (kappa (sigmoid-kernel sigmoid-kernel))
42.2.1.4.3.3 Slot: shift
  • Value type: t
  • Initial value: NIL
  • Initargs: shift
  • Allocation: instance
42.2.1.4.3.3.1 Accessors

42.2.1.4.3.3.1.1 Slot Accessor: shift
42.2.1.4.3.3.1.1.1 Syntax
(shift object)
42.2.1.4.3.3.1.1.2 Methods
  • (shift (sigmoid-kernel sigmoid-kernel))

42.2.2 External Global Variables


42.2.2.1 Inherited Variable: +linear-kernel+
42.2.2.1.1 Value
#<POLYNOMIAL-KERNEL : D = 1 HOMOGENEOUS>

Type: polynomial-kernel

42.2.2.1.2 Description

42.2.2.2 Inherited Variable: svm
42.2.2.2.1 Value
#<CLOSURE (LAMBDA (CLML.SVM.PWSS3::POINT)             :IN            
CLML.SVM.PWSS3::MAKE-DISCRIMINANT-FUNCTION) {1003880DBB}>

Type: function

42.2.2.2.2 Description

42.2.3 External Functions


42.2.3.1 Inherited Function: gaussian-kernel
42.2.3.1.1 Syntax
(gaussian-kernel sigma2)
42.2.3.1.2 Description

42.2.3.2 Inherited Function: kernel
42.2.3.2.1 Syntax
(kernel kernel x1 x2)
42.2.3.2.2 Description

42.2.3.3 Inherited Function: polynomial-kernel
42.2.3.3.1 Syntax
(polynomial-kernel dimension homogeneousp)
42.2.3.3.2 Description

42.2.3.4 Inherited Function: radial-kernel
42.2.3.4.1 Syntax
(radial-kernel gamma)
42.2.3.4.2 Description

For GAMMA > 0.


42.2.3.5 Inherited Function: sigmoid-kernel
42.2.3.5.1 Syntax
(sigmoid-kernel kappa shift)
42.2.3.5.2 Description

For some [not every] KAPPA > 0 and SHIFT < 0.


42.2.3.6 Inherited Function: svm
42.2.3.6.1 Syntax
(svm)
42.2.3.6.2 Description
  • return: <Closure>
    • return of <Closure>: two values, (result number)
      • result : t(positive) | nil(negative)
      • number : value of kernel-fn
    • argument of <Closure>: <seq>, estimation target
  • arguments:
    • kernel : <kernel-fn>
    • positive-data : <seq seq>, training data e.g. '((8 8) (8 20) (8 44))
    • negative-data : <seq seq>, training data
    • iterations : <integer>
    • lagrange-iterations : <integer>
    • tolerance : <number>

Returns a decision function based on the given kernel function and training data.

42.2.3.6.2.0.1 sample usage
SVM(8): (defparameter *positive-set*
  '((8.0 8.0) (8.0 20.0) (8.0 44.0) (8.0 56.0) (12.0 32.0) (16.0 16.0) (16.0 48.0)
    (24.0 20.0) (24.0 32.0) (24.0 44.0) (28.0 8.0) (32.0 52.0) (36.0 16.0)))
SVM(9): (defparameter *negative-set*
  '((36.0 24.0) (36.0 36.0) (44.0 8.0) (44.0 44.0) (44.0 56.0)
    (48.0 16.0) (48.0 28.0) (56.0 8.0) (56.0 44.0) (56.0 52.0)))
SVM(21): (setf linear-fcn
              (svm +linear-kernel+ *positive-set* *negative-set*))
	      #<Closure (:INTERNAL DECISION 0) @ #x212ebfc2>
SVM(22): (funcall linear-fcn (car (last *positive-set*)))
NIL
-46.88582273865575
SVM(23): (setf polynomial-fcn
           (svm (polynomial-kernel 3 nil) *positive-set* *negative-set*))
 #<Closure (:INTERNAL DECISION 0) @ #x20b7c122>
SVM(24): (funcall polynomial-fcn (car (last *positive-set*)))
T
4.849458930036461e+7
SVM(25): (funcall polynomial-fcn '(30.0 20.0))
T
2.3224182219070548e+8

42.3 Ambiguous Symbols

42.3.1 Sigmoid-Kernel

Disambiguation.

  • Function: sigmoid-kernel
  • Class: sigmoid-kernel

42.3.2 Radial-Kernel

Disambiguation.

  • Function: radial-kernel
  • Class: radial-kernel

42.3.3 Polynomial-Kernel

Disambiguation.

  • Function: polynomial-kernel
  • Class: polynomial-kernel

42.3.4 Kernel

Disambiguation.

  • Function: kernel
  • Class: kernel

42.3.5 Svm

Disambiguation.

  • Variable: svm
  • Function: svm
  • Package: svm

43 Package: clml.svm.one-class

  • Uses: common-lisp, clml.svm.wss3, hjs.util.meta, hjs.util.vector, hjs.learn.read-data, hjs.util.matrix
  • Used by: clml.test

43.1 Description

Support Vector Regression Package using SMO-type algorithm

Reference:

43.2 External Symbols

43.2.1 External Functions


43.2.1.1 Inherited Function: one-class-svm
43.2.1.1.1 Syntax
(one-class-svm data-vector &key nu gamma)
43.2.1.1.2 Description
  • return: <Closure>, one-class-SVM
  • arguments:
    • data-vector : (SIMPLE-ARRAY T (* )) consist of (SIMPLE-ARRAY DOUBLE-FLOAT (* ))
    • nu : 0 <= nu <= 1, parameter
    • gamma : gamma of RBF-kernel
43.2.1.1.2.0.1 sample usage
ONE-CLASS-SVM(15): (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc-train-for-svm.csv")
                                                 :type :csv
                                                 :csv-type-spec (make-list 10 :initial-element 'double-float))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
NUMBER OF DIMENSIONS: 10
DATA POINTS: 338 POINTS
ONE-CLASS-SVM(16): (setf data-vector (dataset-points (pick-and-specialize-data * :data-types (make-list 10 :initial-element :numeric))))
 #(#(5.0 4.0 4.0 5.0 7.0 10.0 3.0 2.0 1.0 1.0) #(6.0 8.0 8.0 1.0 3.0 4.0 3.0 7.0 1.0 1.0)
  #(8.0 10.0 10.0 8.0 7.0 10.0 9.0 7.0 1.0 -1.0) #(2.0 1.0 2.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0)
  #(4.0 2.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0) #(2.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0)
  #(1.0 1.0 1.0 1.0 2.0 3.0 3.0 1.0 1.0 1.0) #(7.0 4.0 6.0 4.0 6.0 1.0 4.0 3.0 1.0 -1.0)
  #(4.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) #(6.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) ...)
ONE-CLASS-SVM(17): (setf one-class-svm (one-class-svm data-vector :nu 0.01 :gamma 0.005))
 #<Closure (:INTERNAL MAKE-DISCRIMINANT-FUNCTION 0) @ #x1003db0772>
ONE-CLASS-SVM(18): (funcall one-class-svm (svref data-vector 0))
1.0 ;;normal value
ONE-CLASS-SVM(19): (loop
		     for data across data-vector
		     if (= -1.0 (funcall one-class-svm data))
		     do (print data))
;;outliers
 #(10.0 4.0 2.0 1.0 3.0 2.0 4.0 3.0 10.0 -1.0) 
 #(6.0 10.0 2.0 8.0 10.0 2.0 7.0 8.0 10.0 -1.0) 
 #(5.0 10.0 6.0 1.0 10.0 4.0 4.0 10.0 10.0 -1.0) 
 #(1.0 1.0 1.0 1.0 10.0 1.0 1.0 1.0 1.0 1.0) 
 #(10.0 8.0 10.0 10.0 6.0 1.0 3.0 1.0 10.0 -1.0) 
 #(10.0 10.0 10.0 3.0 10.0 10.0 9.0 10.0 1.0 -1.0) 
 #(9.0 1.0 2.0 6.0 4.0 10.0 7.0 7.0 2.0 -1.0) 
 #(2.0 7.0 10.0 10.0 7.0 10.0 4.0 9.0 4.0 -1.0) 
 #(3.0 10.0 3.0 10.0 6.0 10.0 5.0 1.0 4.0 -1.0) 
 #(1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0) 
 #(10.0 8.0 10.0 1.0 3.0 10.0 5.0 1.0 1.0 -1.0) 
 #(10.0 2.0 2.0 1.0 2.0 6.0 1.0 1.0 2.0 -1.0) 
 #(5.0 7.0 10.0 10.0 5.0 10.0 10.0 10.0 1.0 -1.0) 
 NIL

43.2.1.2 Inherited Function: qp-solver
43.2.1.2.1 Syntax
(qp-solver training-vector kernel-function nu)
43.2.1.2.2 Description

for one-class-svm

43.3 Ambiguous Symbols

43.3.1 One-Class-Svm

Disambiguation.

  • Function: one-class-svm
  • Package: one-class-svm

44 Package: clml.svm.pwss3

  • Uses: common-lisp, hjs.util.meta, hjs.util.vector, hjs.learn.read-data, hjs.util.matrix
  • Used by: clml.test

44.1 Description

44.2 External Symbols

44.2.1 External Functions


44.2.1.1 Internal Function: load-svm-learner
44.2.1.1.1 Syntax
(load-svm-learner file-name kernel-function &key external-format)
44.2.1.1.2 Description

44.2.1.2 Internal Function: make-linear-kernel
44.2.1.2.1 Syntax
(make-linear-kernel)
44.2.1.2.2 Description

44.2.1.3 Internal Function: make-one-class-svm-kernel
44.2.1.3.1 Syntax
(make-one-class-svm-kernel &key gamma)
44.2.1.3.2 Description

44.2.1.4 Internal Function: make-polynomial-kernel
44.2.1.4.1 Syntax
(make-polynomial-kernel &key gamma r d)
44.2.1.4.2 Description

44.2.1.5 Internal Function: make-rbf-kernel
44.2.1.5.1 Syntax
(make-rbf-kernel &key gamma)
44.2.1.5.2 Description

44.2.1.6 Internal Function: make-svm-learner
44.2.1.6.1 Syntax
(make-svm-learner training-vector kernel-function &key c (weight 1.0) file-name
                  external-format cache-size-in-mb)
44.2.1.6.2 Description

44.2.1.7 Internal Function: svm-validation
44.2.1.7.1 Syntax
(svm-validation svm-learner test-vector)
44.2.1.7.2 Description

45 Package: clml.svm.smo

  • Uses: common-lisp, hjs.learn.read-data, hjs.util.vector, hjs.util.matrix, hjs.util.meta
  • Used by: clml.test

45.1 Description

Support-Vector-Machine (Soft Margin) Support Vector Machine Package using SMO algorithm Reference: Jhon C. Platt.

45.2 External Symbols

45.2.1 External Macros


45.2.1.1 Inherited Macro: call-kernel-function-with-indices
45.2.1.1.1 Syntax
(call-kernel-function-with-indices kernel-function i1 i2)
45.2.1.1.2 Description

45.2.1.2 Inherited Macro: call-kernel-function-with-vectors
45.2.1.2.1 Syntax
(call-kernel-function-with-vectors kernel-function point1 point2)
45.2.1.2.2 Description

45.2.2 External Functions


45.2.2.1 Inherited Function: linear-kernel
45.2.2.1.1 Syntax
(linear-kernel z-i z-j)
45.2.2.1.2 Description

z-i =(x-i, y-i), x-i:input vector, y-i:label (+1 or -1)


45.2.2.2 Internal Function: load-svm-learner
45.2.2.2.1 Syntax
(load-svm-learner file-name kernel-function)
45.2.2.2.2 Description
  • return: <Closure>, SVM
  • argumtns:
    • file-name : save file name of SVM
    • kernel-function :<Closure>, used kernel function to make the SVM
    • external-format : character code

45.2.2.3 Internal Function: make-polynomial-kernel
45.2.2.3.1 Syntax
(make-polynomial-kernel &key gamma r d)
45.2.2.3.2 Description
  • return: <Closure>, polynomial kernel
  • arguments:
    • gamma, r, d : K(x,y) = (gamma*(x・y)+r)d

45.2.2.4 Internal Function: make-rbf-kernel
45.2.2.4.1 Syntax
(make-rbf-kernel &key gamma)
45.2.2.4.2 Description
  • return: <Closure>, RBF kernel (Gaussian kernel)
  • aregumrns:
    • gamma : K(x,y) = exp(-gamma*|| x- y ||2)

45.2.2.5 Internal Function: make-svm-learner
45.2.2.5.1 Syntax
(make-svm-learner training-vector kernel-function c)
45.2.2.5.2 Description
  • return: <Closure>, SVM
  • arguments:
    • training-vector : (SIMPLE-ARRAY T (* )) consist of (SIMPLE-ARRAY DOUBLE-FLOAT (* )), data-format : last column is a label (+1.0 or -1.0)
    • kernel-function :<Closure>, kernel function
    • c : penalty parameter of soft margin SVM
    • weight : weight parameter of -1 class, default is 1.0
    • file-name : file-name to save the SVM
    • external-format : character code
    • cache-size-in-MB : Cache size (default 100)
  • reference: Working Set Selection Using Second Order Information for Training SVM. Chih-Jen Lin. Joint work with Rong-En Fan and Pai-Hsuen Chen.

45.2.2.6 Internal Function: svm-validation
45.2.2.6.1 Syntax
(svm-validation svm-learner test-vector)
45.2.2.6.2 Description
  • return : classification result, accuracy
  • arguments:
    • svm-learner : SVM
    • test-vector
45.2.2.6.2.0.1 sample usage
SVM.WSS3(44): (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc-train-for-svm.csv")
						 :type :csv
						 :csv-type-spec (make-list 10 :initial-element 'double-float))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
NUMBER OF DIMENSIONS: 10
DATA POINTS: 338 POINTS
SVM.WSS3(45): (setf training-vector (dataset-points (pick-and-specialize-data * :data-types (make-list 10 :initial-element :numeric))))
 #(#(5.0 4.0 4.0 5.0 7.0 10.0 3.0 2.0 1.0 1.0) #(6.0 8.0 8.0 1.0 3.0 4.0 3.0 7.0 1.0 1.0) #(8.0 10.0 10.0 8.0 7.0 10.0 9.0 7.0 1.0 -1.0)
  #(2.0 1.0 2.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) #(4.0 2.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0) #(2.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0)
  #(1.0 1.0 1.0 1.0 2.0 3.0 3.0 1.0 1.0 1.0) #(7.0 4.0 6.0 4.0 6.0 1.0 4.0 3.0 1.0 -1.0) #(4.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0)
  #(6.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) ...)
SVM.WSS3(46): (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc-test-for-svm.csv")
						 :type :csv
						 :csv-type-spec (make-list 10 :initial-element 'double-float))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
NUMBER OF DIMENSIONS: 10
DATA POINTS: 345 POINTS
SVM.WSS3(47): (setf test-vector (dataset-points (pick-and-specialize-data * :data-types (make-list 10 :initial-element :numeric))))
 #(#(5.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) #(3.0 1.0 1.0 1.0 2.0 2.0 3.0 1.0 1.0 1.0) #(4.0 1.0 1.0 3.0 2.0 1.0 3.0 1.0 1.0 1.0)
  #(1.0 1.0 1.0 1.0 2.0 10.0 3.0 1.0 1.0 1.0) #(2.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 5.0 1.0) #(1.0 1.0 1.0 1.0 1.0 1.0 3.0 1.0 1.0 1.0)
  #(5.0 3.0 3.0 3.0 2.0 3.0 4.0 4.0 1.0 -1.0) #(8.0 7.0 5.0 10.0 7.0 9.0 5.0 5.0 4.0 -1.0) #(4.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0)
  #(10.0 7.0 7.0 6.0 4.0 10.0 4.0 1.0 2.0 -1.0) ...)
SVM.WSS3(49): (setf kernel (make-rbf-kernel :gamma 0.05))
 #<Closure (:INTERNAL MAKE-RBF-KERNEL 0) @ #x101ba6a6f2>
SVM.WSS3(50): (setf svm (make-svm-learner training-vector kernel :c 10 :file-name "svm-sample" :external-format :utf-8))
 #<Closure (:INTERNAL MAKE-DISCRIMINANT-FUNCTION 0) @ #x101bc76a12>
SVM.WSS3(51): (funcall svm (svref test-vector 0))
1.0
SVM.WSS3(52): (svm-validation svm test-vector)
(((1.0 . -1.0) . 2) ((-1.0 . -1.0) . 120) ((-1.0 . 1.0) . 10) ((1.0 . 1.0) . 213))
96.52173913043478
SVM.WSS3(53): (setf svm2 (load-svm-learner "svm-sample" kernel :external-format :utf-8))
 #<Closure (:INTERNAL MAKE-DISCRIMINANT-FUNCTION 0) @ #x101be9db02>
SVM.WSS3(54): (svm-validation svm2 test-vector)
(((1.0 . -1.0) . 2) ((-1.0 . -1.0) . 120) ((-1.0 . 1.0) . 10) ((1.0 . 1.0) . 213))
96.52173913043478

46 Package: clml.svm.svr

  • Uses: common-lisp, clml.svm.wss3, hjs.util.meta, hjs.util.vector, hjs.learn.read-data, hjs.util.matrix
  • Used by: clml.test

46.1 Description

Support-Vector-Regression

Support Vector Regression Package using SMO-type algorithm Reference:

46.2 External Symbols

46.2.1 External Functions


46.2.1.1 Inherited Function: load-svr-learner
46.2.1.1.1 Syntax
(load-svr-learner file-name kernel-function &key external-format)
46.2.1.1.2 Description
  • return: <Closure>, epsilon-SVR
  • argumetns:
    • file-name : save file name of SVR
    • kernel-function :<Closure>, used kernel function to make the SVR
    • external-format : character code

46.2.1.2 Inherited Function: make-svr-learner
46.2.1.2.1 Syntax
(make-svr-learner training-vector kernel-function &key c epsilon file-name
                  external-format)
46.2.1.2.2 Description
  • return: <Closure>, epsilon-SVR
  • arguments:
    • training-vector : (SIMPLE-ARRAY T (* )) consist of (SIMPLE-ARRAY DOUBLE-FLOAT (* )), data-format : last column is a target value
    • kernel-function :<Closure>, kernel function
    • c : penalty parameter
    • epsilon : width of epsilon-tube
    • file-name : file-name to save the SVR
    • external-format : character code
  • reference: A Study on SMO-type Decomposition Methods for Support Vector Machines. Pai-Hsuen Chen, Rong-En Fan, and Chih-Jen Lin

46.2.1.3 Inherited Function: svr-validation
46.2.1.3.1 Syntax
(svr-validation svr-learner test-vector)
46.2.1.3.2 Description
  • return : MSE (Mean Squared Error)
  • arguments:
    • svr-learner
    • test-vector
46.2.1.3.2.0.1 sample usage
SVR(251): (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc-train-for-svm.csv")
                                                 :type :csv
                                                 :csv-type-spec (make-list 10 :initial-element 'double-float))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
NUMBER OF DIMENSIONS: 10
DATA POINTS: 338 POINTS
SVR(252): (pick-and-specialize-data * :data-types (make-list 10 :initial-element :numeric))
 #<NUMERIC-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC
NUMBER OF DIMENSIONS: 10
NUMERIC DATA POINTS: 338 POINTS
SVR(253): (setf training-vector (choice-dimensions '("Cl.thickness" "Cell.shape" "Marg.adhesion" "Epith.c.size" "Bare.nuclei" 
					   "Bl.cromatin" "Normal.nucleoli" "Mitoses" "Class" "Cell.size") *))
 #(#(5.0 4.0 5.0 7.0 10.0 3.0 2.0 1.0 1.0 4.0) #(6.0 8.0 1.0 3.0 4.0 3.0 7.0 1.0 1.0 8.0)
  #(8.0 10.0 8.0 7.0 10.0 9.0 7.0 1.0 -1.0 10.0) #(2.0 2.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0 1.0)
  #(4.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 2.0) #(2.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0)
  #(1.0 1.0 1.0 2.0 3.0 3.0 1.0 1.0 1.0 1.0) #(7.0 6.0 4.0 6.0 1.0 4.0 3.0 1.0 -1.0 4.0)
  #(4.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0 1.0) #(6.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0 1.0) ...)
SVR(254): (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc-test-for-svm.csv")
                                                 :type :csv
                                                 :csv-type-spec (make-list 10 :initial-element 'double-float))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
NUMBER OF DIMENSIONS: 10
DATA POINTS: 345 POINTS
SVR(255): (pick-and-specialize-data * :data-types (make-list 10 :initial-element :numeric))
 #<NUMERIC-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC
NUMBER OF DIMENSIONS: 10
NUMERIC DATA POINTS: 345 POINTS
SVR(256): (setf test-vector (choice-dimensions '("Cl.thickness" "Cell.shape" "Marg.adhesion" "Epith.c.size" "Bare.nuclei" 
					   "Bl.cromatin" "Normal.nucleoli" "Mitoses" "Class" "Cell.size") *))
 #(#(5.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0 1.0) #(3.0 1.0 1.0 2.0 2.0 3.0 1.0 1.0 1.0 1.0)
  #(4.0 1.0 3.0 2.0 1.0 3.0 1.0 1.0 1.0 1.0) #(1.0 1.0 1.0 2.0 10.0 3.0 1.0 1.0 1.0 1.0)
  #(2.0 1.0 1.0 2.0 1.0 1.0 1.0 5.0 1.0 1.0) #(1.0 1.0 1.0 1.0 1.0 3.0 1.0 1.0 1.0 1.0)
  #(5.0 3.0 3.0 2.0 3.0 4.0 4.0 1.0 -1.0 3.0) #(8.0 5.0 10.0 7.0 9.0 5.0 5.0 4.0 -1.0 7.0)
  #(4.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0) #(10.0 7.0 6.0 4.0 10.0 4.0 1.0 2.0 -1.0 7.0) ...)
SVR(257): (setf kernel (make-rbf-kernel :gamma 0.001))
 #<Closure (:INTERNAL MAKE-RBF-KERNEL 0) @ #x100dd4de92>
SVR(258): (setf svr (make-svr-learner training-vector kernel :c 10 :epsilon 0.01 :file-name "sample-svr" :external-format :utf-8))
 #<Closure (:INTERNAL MAKE-REGRESSION-FUNCTION 0) @ #x1018e12f72>
SVR(259): (funcall svr (svref test-vector 0))
1.0226811804369387
SVR(260): (svr-validation svr test-vector)
1.4198010745021363
SVR(261): (setf svr2 (load-svr-learner "sample-svr" kernel :external-format :utf-8))
 #<Closure (:INTERNAL MAKE-REGRESSION-FUNCTION 0) @ #x1019594222>
SVR(262): (svr-validation svr2 test-vector)
1.4198010745021363

47 Package: clml.svm.wss3

  • Uses: common-lisp, hjs.util.meta, hjs.util.vector, hjs.learn.read-data, hjs.util.matrix
  • Used by: clml.test, clml.classifiers.logistic-regression, clml.svm.svr, clml.svm.one class

47.1 Description

47.2 External Symbols

47.2.1 External Macros


47.2.1.1 Inherited Macro: call-kernel-function
47.2.1.1.1 Syntax
(call-kernel-function kernel-function point1 point2)
47.2.1.1.2 Description

47.2.1.2 Inherited Macro: call-kernel-function-uncached
47.2.1.2.1 Syntax
(call-kernel-function-uncached kernel-function point1 point2)
47.2.1.2.2 Description

47.2.1.3 Inherited Macro: define-kernel-function
47.2.1.3.1 Syntax
(define-kernel-function (point1-var point2-var &optional (name unknown))
  &body
  body)
47.2.1.3.2 Description

47.2.2 External Functions


47.2.2.1 Internal Function: load-svm-learner
47.2.2.1.1 Syntax
(load-svm-learner file-name kernel-function &key external-format)
47.2.2.1.2 Description

47.2.2.2 Internal Function: make-linear-kernel
47.2.2.2.1 Syntax
(make-linear-kernel)
47.2.2.2.2 Description

47.2.2.3 Internal Function: make-one-class-svm-kernel
47.2.2.3.1 Syntax
(make-one-class-svm-kernel &key gamma)
47.2.2.3.2 Description

47.2.2.4 Internal Function: make-polynomial-kernel
47.2.2.4.1 Syntax
(make-polynomial-kernel &key gamma r d)
47.2.2.4.2 Description

47.2.2.5 Internal Function: make-rbf-kernel
47.2.2.5.1 Syntax
(make-rbf-kernel &key gamma)
47.2.2.5.2 Description

47.2.2.6 Internal Function: make-svm-learner
47.2.2.6.1 Syntax
(make-svm-learner training-vector kernel-function &key c (weight 1.0) file-name
                  external-format cache-size-in-mb)
47.2.2.6.2 Description

47.2.2.7 Inherited Function: sign
47.2.2.7.1 Syntax
(sign x)
47.2.2.7.2 Description

47.2.2.8 Internal Function: svm-validation
47.2.2.8.1 Syntax
(svm-validation svm-learner test-vector)
47.2.2.8.2 Description

48 Package: clml.test

  • Uses: common-lisp, hjs.learn.vars, hjs.learn.read data, clml.statistics, clml.clustering.cluster-validation, clml.time-series.util, clml.time-series.read-data, clml.time-series.statistics, clml.time-series.state-space, clml.time-series.autoregression, clml.time-series.anomaly-detection, clml.time-series.exponential smoothing, clml.time-series.burst detection, clml.time series.changefinder, clml.clustering.hc, hjs.util.matrix, hjs.util.vector, hjs.learn.k means, hjs.util.missing-value, clml.clustering.nmf, clml.clustering.optics, clml.clustering.spectral-clustering, clml.svm.mu, clml.svm.smo, clml.svm.wss3, clml.svm.pwss3, clml.svm.one class, clml.svm.svr, clml.classifiers.linear-regression, clml.classifiers.nbayes, clml.nonparametric.hdp-lda, clml.decision-tree.random-forest, clml.text.utilities, clml.association-rule, clml.som
  • Used by: None.

48.1 Description

48.2 External Symbols

49 Package: clml.text.utilities

  • Uses: common-lisp, hjs.learn.read-data
  • Used by: clml.test

49.1 Description

Text Utilities

49.1.0.1 sample usage
TEXT-UTILS(4): (calculate-string-similarity "kitten" "sitting" :type :lev)
0.5384615384615384
TEXT-UTILS(5): (calculate-string-similarity "kitten" "sitting" :type :lcs)
0.6153846153846154
TEXT.UTILS(42): (setf data (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/equivalence-class.csv") :type :csv :csv-type-spec
 '(string string double-float) :external-format :utf-8))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: string1 | string2 | label
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN
DATA POINTS: 7 POINTS
TEXT-UTILS(43): (dataset-points data)
 #(#("x" "y" 1.0) #("y" "z" 1.0) #("x" "w" -1.0) #("a" "b" 1.0) #("c" "c" 1.0) #("e" "f" -1.0) #("f" "x" 1.0))
TEXT-UTILS(44): (equivalence-clustering *)
(("e") ("f" "z" "y" "x") ("c") ("b" "a") ("w"))

49.2 External Symbols

49.2.1 External Functions


49.2.1.1 Inherited Function: calculate-lcs-distance
49.2.1.1.1 Syntax
(calculate-lcs-distance str1 str2)
49.2.1.1.2 Description

49.2.1.2 Inherited Function: calculate-levenshtein-similarity
49.2.1.2.1 Syntax
(calculate-levenshtein-similarity str1 str2)
49.2.1.2.2 Description

49.2.1.3 Inherited Function: calculate-string-similarity
49.2.1.3.1 Syntax
(calculate-string-similarity str1 str2 &key (type lev))
49.2.1.3.2 Description
  • return: number of similarity
  • arguments:
    • str1: <string>
    • str2: <string>
    • type: :lev | :lcs
  • comments:

    :lev for type, calculate similarity by levenshtein distance.\

    :lcs for type, calculate similarity by lcs distance.


49.2.1.4 Inherited Function: equivalence-clustering
49.2.1.4.1 Syntax
(equivalence-clustering data-vector)
49.2.1.4.2 Description
  • return: clustering results list
  • arguments:
    • data-vector : #(string-a,string-b,…,label), label = 1.0 <->(a~b), label = -1.0 <-> not (a~b)

Based on Knuth's equivalence clustering algorithm

50 Package: clml.time-series.anomaly-detection

  • Uses: common-lisp, hjs.learn.read-data, hjs.util.meta, hjs.util.vector, hjs.util.matrix, hjs.learn.vars, hjs.util.missing-value, clml.statistics, clml.utility.csv, clml.time-series.util, clml.time-series.statistics, clml.time-series.read-data, clml.time-series.state-space, clml.time-series.autoregression
  • Used by: clml.test

50.1 Description

Direction-based anomaly detector * Reference T.Ide and H.Kashima "Eigenspace-based Anomaly Detection in Computer Systems" sec.5

50.1.0.1 sample usage for make-db-detector and make-periodic-detector
TS-ANOMALY-DETECTION(4): (setf sample-ts
                           (time-series-data
                            (read-data-from-file
                             "https://mmaul.github.io/clml.data/sample/traffic-balance.csv" 
                             :type :csv
                             :csv-type-spec (cons 'string
                                                  (make-list 6 :initial-element 'double-float)))
                            :frequency 12 :except '(0) :time-label 0))
; Autoloading for (SETF EOL-CONVENTION):
; Fast loading from bundle code/efmacs.fasl.
; Fast loading from bundle code/ef-e-anynl.fasl.
;   Fast loading from bundle code/ef-e-crlf.fasl.
;   Fast loading from bundle code/ef-e-cr.fasl.
; Fast loading from bundle code/ef-e-crcrlf.fasl.
#<TIME-SERIES-DATASET >
DIMENSIONS: IF1 | IF2 | IF3 | IF4 | IF5 | IF6
TYPES:      NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC
NUMBER OF DIMENSIONS: 6
FREQUENCY:  12
START:      (1 1)
END:        (85 7)
POINTS:     1015
TIME-LABEL: TIME
TS-ANOMALY-DETECTION(5): (loop with detector = (make-db-detector 
                                                (sub-ts sample-ts :start '(1 1) :end '(2 12)))
                             for p across (ts-points (sub-ts sample-ts :start '(3 1)))
                             collect (funcall detector (ts-p-pos p)))
(7.689004308083502e-4 8.690742068634405e-4 0.0014640360422599752 9.645504419952822e-4 0.002189430044882701 0.0022804402419548397 8.653971028227403e-4 0.0021245846566718685 0.0021297890535286745
 0.003035579690776613 ...)
TS-ANOMALY-DETECTION(6): (loop with detector = (make-periodic-detector
                                                (sub-ts sample-ts :start '(1 1) :end '(2 12)))
                             for p across (ts-points (sub-ts sample-ts :start '(3 1)))
                             collect (funcall detector (ts-p-pos p)))
((:SCORE 0.15980001156818346 :LOCAL-SCORES (-0.011247495797210605 0.04067641708837213 0.07657475988236122 0.026173388386296143 -0.001005722797717759 -0.13117336322290166))
 (:SCORE 0.16606559269099325 :LOCAL-SCORES (-0.04404576382434579 0.08836079938698248 0.06427181525186569 0.008060984870295258 6.037724071195098e-5 -0.11672432427082227))
 (:SCORE 0.0835963350476519 :LOCAL-SCORES (0.02860344056963936 0.02049834345000817 0.018558627759386243 0.005805395166900154 -1.7563302955435247e-4 -0.07329208280202894))
 (:SCORE 0.10895276517361178 :LOCAL-SCORES (0.06171796944486013 0.02627577908981959 -0.0013938026860552477 7.108933807211727e-4 -0.0015292225676566903 -0.08581498358943485))
 (:SCORE 0.14372822478142372 :LOCAL-SCORES (0.019119719424318164 0.06530386435337952 -0.03223066630047898 0.05779465755012304 -0.0021226015789952857 -0.10789806554381363))
 (:SCORE 0.1214316386275602 :LOCAL-SCORES (0.08180945936566704 -0.01666669357385849 0.01789677418744477 -0.08623381474472612 -5.783555512765765e-4 0.003743461124108086))
 (:SCORE 0.16328621183435152 :LOCAL-SCORES (0.09252923344792947 0.04206473653695766 0.03524081165133149 -0.10442527700870255 -6.866050459105892e-4 -0.06471611713622019))
 (:SCORE 0.17165824330218574 :LOCAL-SCORES (0.1124055553487212 -0.04483642919806279 0.06943579226133692 -0.08609866163195316 -1.3815655640593742e-4 -0.05081348776600684))
 (:SCORE 0.14705276128118872 :LOCAL-SCORES (0.03176665855145954 -0.05169044126068538 0.11199895677113193 -0.020881754613730465 -0.0013360512015534781 -0.06969391195126472))
 (:SCORE 0.1753941034019109 :LOCAL-SCORES (0.0926869320817864 -0.04500698002481467 0.08111355541737571 -0.010867820410934509 -0.0027675310185543865 -0.11509576770374046)) ...)
50.1.0.2 sample usage for SNN and EEC
TS-ANOMALY-DETECTION(8): (setf exchange 
                           (time-series-data
                            (read-data-from-file
                             "https://mmaul.github.io/clml.data/sample/exchange.csv" 
                             :type :csv
                             :csv-type-spec (cons 'string
                                                  (make-list 10 :initial-element 'double-float)))
                            :except '(0) :time-label 0))
#<TIME-SERIES-DATASET >
DIMENSIONS: CAD/USD | EUR/USD | JPY/USD | GBP/USD | CHF/USD | AUD/USD | HKD/USD | NZD/USD | KRW/USD | MXN/USD
TYPES:      NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC
NUMBER OF DIMENSIONS: 10
FREQUENCY:  1
START:      (1 1)
END:        (753 1)
POINTS:     753
TIME-LABEL: YYYY/MM/DD
TS-ANOMALY-DETECTION(9): (let ((target-snn (make-snn (sub-ts exchange :start 1 :end 150) 3))
                               (reference-snn (make-snn (sub-ts exchange :start 600 :end 700) 3)))
                           (e-scores target-snn reference-snn))
(("AUD/USD" . 0.47406298323897705) ("CAD/USD" . 0.5240011355714634) ("CHF/USD" . 0.5325785438502517) ("EUR/USD" . 0.731769158687747) ("GBP/USD" . 0.596827444239165) ("HKD/USD" . 0.5766733684269696)
 ("JPY/USD" . 0.5117506042665696) ("KRW/USD" . 0.5198055610159624) ("MXN/USD" . 0.7027828954312578) ("NZD/USD" . 0.2842836687583187))
TS-ANOMALY-DETECTION(10): (loop with detector = (make-eec-detector
                                                 (sub-ts exchange :start 1 :end 60) 20)
                              for p across (ts-points (sub-ts exchange :start 60))
                              collect (funcall detector (ts-p-pos p)))
((:SCORE 2.700571112024573 :LOCAL-SCORES
  (-3.7189814823543945 1.0326461685226247 -0.09199334202340251 -1.5304334860393167 1.6336817412409927 0.09973192007442783 -1.7705007982055647 -1.3659133055436354 1.6229166989275772 -2.456418564898763))
 (:SCORE 2.2333558257821577 :LOCAL-SCORES
  (-3.905638387254389 1.0111353552477693 -0.16180107817711298 -0.06211424245500806 2.444035892878855 -0.7941221366494797 -2.0601881585490758 -0.6032554617242315 1.3644194991066583 -2.94095956222471))
 (:SCORE 1.9868164604264957 :LOCAL-SCORES
  (-4.071453905957172 0.09987314488820478 -0.5124850991763434 0.3572466274370432 1.985594397643084 -1.2627672914256596 -2.0286025799206437 -2.0180011854462823 1.0031799987968517 -3.349034884667727))
 (:SCORE 1.99119158115065 :LOCAL-SCORES
  (-4.21295552995317 3.6696601922048 0.13498367839300002 2.202025796055173 1.5652235278554427 -1.5185993444794728 -1.9951097435792884 -2.141676229907566 0.536949673309007 0.13587904258754527))
 (:SCORE 1.655330278980456 :LOCAL-SCORES
  (-3.940751233076124 1.4944533102503788 -1.134801399167889 1.0953740695897256 0.8538413750781987 -2.6483828385806047 -1.9833372992457443 -2.1457229135357965 -0.25535073809135234 -1.1228770376956778))
 (:SCORE 1.6026376553309072 :LOCAL-SCORES
  (-0.034554670356311185 1.2292838508330988 1.132721967732395 -0.7371812412223815 -1.2217525313170159 -3.7170161170631384 -0.8394971355287675 -2.309275510777308 -0.6893891878271913 -1.2247368414257422))
 (:SCORE 1.4921358653856052 :LOCAL-SCORES
  (-1.1119582168928317 0.13109381389384833 0.03822852402739136 -1.2567269843174933 -1.0016538526115792 -3.7378375887102315 0.0018749768626725657 -2.1904933121802066 -1.0031674527371155
   -1.8580823578222343))
 (:SCORE 1.834987095608023 :LOCAL-SCORES
  (-2.411063158982719 -0.9462790230517837 -0.5412882072844031 -1.8686452258034443 -2.4080116434386505 -4.2224169886297185 -0.19950597770025008 -2.1142292908200604 0.49105626655832846 -1.4030218415732563))
 (:SCORE 1.0321828011949825 :LOCAL-SCORES
  (-3.2832950290358296 -1.7201312662081096 -0.806431510082311 -0.49749735373008097 -2.3879869063190085 -4.243481779019334 -1.1894302963419576 -2.5038090216601767 -0.1556970436113533 -1.4378596777323336))
 (:SCORE 0.5533902042593536 :LOCAL-SCORES
  (-3.7083233694175766 -1.6133834329235863 -0.01938368944029429 -0.6476096999243521 0.03650134747649691 -3.3240586306405393 -1.8620675130088626 -1.7836998046168742 -0.875130410874981 -1.9750969929005304))
 ...)

50.2 External Symbols

50.2.1 External Functions


50.2.1.1 Inherited Function: e-scores
50.2.1.1.1 Syntax
(e-scores t r)
50.2.1.1.2 Description
  • return: alist (key:name-of-parameter, value:E-score)
  • arguments:
    • target-snn : <snn>, target SNN
    • reference-snn : <snn>, reference SNN
  • descriptions:
    • reference: T.Ide, S.Papadimitriou, M.Vlachos Computing Correlation Anomaly Scores using Stochastic Nearest Neighbors
    • Graph-based (correlation) anomaly detection

50.2.1.2 Inherited Function: make-db-detector
50.2.1.2.1 Syntax
(make-db-detector ts &key beta (typical svd) (pc 0.005) (normalize t))
50.2.1.2.2 Description
  • return: <Closure>
  • arguments:
    • ts : <time-series-dataset>, time series data for initialization
    • beta : 0 < <double-float> < 1, discounting parameter
    • typical : :svd | :mean, method for typical pattern, :svd for singular valur decomposition, :mean for average
    • pc : 0 < <double-float> < 1, upper cumulative probability for threshold calculation
    • normalize : nil | t, normalize vector (t) or not (nil)
  • arguments for <Closure>:
    • new-dvec : vector representing time series data point
  • return of <Closure>: (values score threshold typical-pattern-vector)
  • descriptions:
    • Direction-based anomaly detection
    • reference: T.Ide and H.Kashima "Eigenspace-based Anomaly Detection in Computer Systems" section 5
    • The number of points in ts is window size.

50.2.1.3 Inherited Function: make-eec-detector
50.2.1.3.1 Syntax
(make-eec-detector ts ws &key (xi 0.8) (global-m 3))
50.2.1.3.2 Description
  • return: <Closure>
  • arguments:
    • ts : <time-series-dataset>, time series data for initialization
    • window-size : positive integer, window size
    • xi : 0 < <double-float> < 1, threshold for correlation strength
    • global-m : positive integer, the number of eigen values for global feature
  • arguments for <Closure>:
    • new-dvec : vector representing time series data point
  • return of <Closure>: plist (:score for anomaly score, :local-scores for local anomaly scores)
  • descriptions:
    • reference: S.Hirose, et.al "Network Anomaly Detection based on Eigen Equation Compression"
    • Correlation-based anomaly detection

50.2.1.4 Inherited Function: make-periodic-detector
50.2.1.4.1 Syntax
(make-periodic-detector ts &key (r 0.5))
50.2.1.4.2 Description
  • return: <Closure>
  • arguments:
    • ts : <time-series-dataset>, time series data for initialization
    • r : 0 < <double-float> < 1, discounting parameter
  • arguments for <Closure>:
    • new-dvec : vector representing time series data point
  • return of <Closure>: plist (:score for anomaly score, :local-scores for local anomaly scores)
  • descriptions:
    • Anomaly detection in consideration of the periodicity
    • Define the multidimensional normal distribution at each point within a cycle, to a local anomaly score standard score abnormality score, conditional Gaussian Mahalanobis distance.
    • The value of r is used for updating of multidimensional normal distribution.
    • The value of ts-freq for ts is regarded as the number of points in a cycle.

50.2.1.5 Inherited Function: make-snn
50.2.1.5.1 Syntax
(make-snn ts k &key (sigma-i 1.0))
50.2.1.5.2 Description
  • return: <snn>
  • arguments:
    • ts : <time-series-dataset>
    • k : number of neighbors
    • sigma-i : Lagrange-multiplier * const.

51 Package: clml.time-series.autoregression

  • Uses: common-lisp, hjs.learn.read-data, hjs.util.meta, hjs.util.vector, hjs.util.matrix, hjs.learn.vars, clml.statistics, clml.time-series.util, clml.time-series.statistics, clml.time-series.read-data, clml.time-series.state-space
  • Used by: clml.test, clml.graph.graph-anomaly-detection, clml.time-series.anomaly-detection

51.1 Description

Package for AutoRegression model

51.1.0.1 sample usage
TS-AR(128): (defparameter ukgas 
               (time-series-data
                (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/UKgas.sexp"))
                :range '(1) :time-label 0
                :start 1960 :frequency 4))

TS-AR(14): (setq model (ar ukgas))
#<AR-MODEL>
method: BURG
Coefficients:
a1 0.17438913366790465
a2 -0.20966263354643136
a3 0.459202505071864
a4 1.0144694385486095
a5 0.2871426375860843
a6 -0.09273505423571009
a7 -0.13087574744684466
a8 -0.34467398543738703
a9 -0.1765456124104221
Order selected 9, sigma^2 estimated as 1231.505368951319

TS-AR(15): (predict model :n-ahead 12)
#<TIME-SERIES-DATASET>
DIMENSIONS: UKgas
TYPES:      NUMERIC
FREQUENCY:  4
START:      (1962 2)
END:        (1989 4)
POINTS:     111
TIME-LABEL: year season
#<TIME-SERIES-DATASET>
DIMENSIONS: standard error
TYPES:      NUMERIC
FREQUENCY:  4
START:      (1962 2)
END:        (1989 4)
POINTS:     111
TIME-LABEL: year season

TS-AR(16): (ar-prediction ukgas :method :burg :n-learning 80 :n-ahead 12)
#<TIME-SERIES-DATASET>
DIMENSIONS: UKgas
TYPES:      NUMERIC
FREQUENCY:  4
START:      (1962 2)
END:        (1983 1)
POINTS:     84
TIME-LABEL: year season
#<AR-MODEL>
method: BURG
Coefficients:
a1 0.03855018085036885
a2 -0.16131564249720193
a3 0.43498481388230215
a4 1.050917089787715
a5 0.5797305440261313
a6 -0.13363258905263287
a7 -0.16163235104434967
a8 -0.3748978324320104
a9 -0.3151508389321235
Order selected 9, sigma^2 estimated as 741.5626361893945
#<TIME-SERIES-DATASET>
DIMENSIONS: standard error
TYPES:      NUMERIC
FREQUENCY:  4
START:      (1962 2)
END:        (1983 1)
POINTS:     84
TIME-LABEL: year season

TS-AR(6): (setq traffic (time-series-data
                         (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/mawi-traffic/pointF-20090330-0402.sexp"))
                         :except '(0) :time-label 0))
#<TIME-SERIES-DATASET>
DIMENSIONS: [   32-   63] | [   64-  127] | [  128-  255] | [  256-  511] | [  512- 1023] | ...
TYPES:      NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | ...
FREQUENCY:  1
START:      (1 1)
END:        (385 1)
POINTS:     385
TIME-LABEL: Time

TS-AR(7): (parcor-filtering traffic :ppm-fname "traffic.ppm")
#<TIME-SERIES-DATASET>
DIMENSIONS: [   32-   63] | [   64-  127] | [  128-  255] | [  256-  511] | [  512- 1023] | ...
TYPES:      NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | NUMERIC | ...
FREQUENCY:  1
START:      (1 1)
END:        (35 1)
POINTS:     35
TIME-LABEL: Time

51.2 External Symbols

51.2.1 External Functions


51.2.1.1 Inherited Function: ar
51.2.1.1.1 Syntax
(ar d &key order-max (demean t) (method burg) (aic t))
51.2.1.1.2 Description
  • return: <ar-model>
  • arguments:
    • d : <time-series-dataset>
    • order-max : <positive integer>
    • method : :yule-walker | :burg
    • aic : nil | t
    • demean : nil | t
  • comments: when aic is t, minimize aic to choose the order (max is order-max) of model. when aic is nil, order-max is the order of model.

51.2.1.2 Inherited Function: ar-prediction
51.2.1.2.1 Syntax
(ar-prediction d &key (method yule-walker) (aic t) order-max n-learning
               (n-ahead 0) (demean t) target-col)
51.2.1.2.2 Description
  • return: (values <time-series-dataset> <ar-model> <time-series-dataset>)
  • arguments:
    • d : <time-series-dataset>
    • order-max : <positive integer>
    • method : :yule-walker | :burg
    • aic : nil | t
    • demean : nil | t
    • n-ahead : <non-negative integer>
    • n-learning : nil | <positive integer>, number of points for learning
    • target-col : nil | <string>, name of target parameter

51.2.1.3 Inherited Function: parcor
51.2.1.3.1 Syntax
(parcor ts &key (order 1) (method burg) ppm-file)
51.2.1.3.2 Description

51.2.1.4 Inherited Function: parcor-filtering
51.2.1.4.1 Syntax
(parcor-filtering ts &key (divide-length 15) (parcor-order 1) (n-ahead 10)
                  ppm-fname)
51.2.1.4.2 Description
  • return: <time-series-dataset>, values for parcor picture
  • arguments:
    • ts : <time-series-dataset>
    • divide-length : <positive integer>
    • parcor-order : <positive integer> below divide-length
    • n-ahead : <non-negative integer>, number for ar-prediction on parcor picture
    • ppm-fname : <string> | <pathname>, name for parcor picture
  • comments: Refer section 3.2.1 of paper http://www.neurosci.aist.go.jp/~kurita/lecture/statimage.pdf \ Divide time series data by divide-length. And make 'parcor picture' for each range.

52 Package: clml.time-series.burst-detection

  • Uses: common-lisp, hjs.learn.read-data, hjs.util.missing value, clml.time-series.util, clml.time-series.statistics, clml.time-series.read-data
  • Used by: clml.test

52.1 Description

52.2 External Symbols

52.2.1 External Functions


52.2.1.1 Inherited Function: continuous-kleinberg
52.2.1.1.1 Syntax
(continuous-kleinberg offsets &key (if-overlap error) (gamma 1) (s 2)
                      (time-reader nil) (column-number nil))
52.2.1.1.2 Description

52.2.1.2 Inherited Function: enumerate-kleinberg
52.2.1.2.1 Syntax
(enumerate-kleinberg batches &key (scaling-param 2) (gamma 1))
52.2.1.2.2 Description

52.2.1.3 Inherited Function: print-burst-indices
52.2.1.3.1 Syntax
(print-burst-indices burst-indices &key (stream t) (type graph))
52.2.1.3.2 Description

53 Package: clml.time-series.changefinder

  • Uses: common-lisp, hjs.learn.read-data, hjs.util.meta, hjs.util.vector, hjs.util.matrix, clml.statistics, clml.time series.util, clml.time series.statistics, clml.time series.read-data, hjs.util.missing-value
  • Used by: clml.test

53.1 Description

ChangeFinder Package for

53.2 External Symbols

53.2.1 External Functions


53.2.1.1 Inherited Function: init-changefinder
53.2.1.1.1 Syntax
(init-changefinder ts &key (score-type log) (ts-wsize 5) (score-wsize 5)
                   (sdar-k 4) (discount 0.005))
53.2.1.1.2 Description
  • return: <changefinder>
  • arguments:
    • ts : <time-series-dataset>
    • score-type : :log | :hellinger, :log for logarithmic loss, :hellinger for hellinger distance
    • ts-wsize : <positive integer>, window size for 1st smoothing
    • score-wsize : <positive integer>, window size for 2nd smoothing
    • sdar-k : <positive integer>, degree for AR
    • discount : 0 < <double-float> < 1, discounting parameter

53.2.1.2 Inherited Function: update-changefinder
53.2.1.2.1 Syntax
(update-changefinder cf new-dvec)
53.2.1.2.2 Description
  • return: (values score score-before-smoothing)
  • arguments:
    • cf : <changefinder>, return value of #'init-changefinder
    • new-dvec : vector representing time series data point

54 Package: clml.time-series.exponential-smoothing

  • Uses: common-lisp, iterate, clml.time-series.util, clml.time-series.statistics, hjs.util.meta, hjs.util.vector, hjs.learn.vars, hjs.learn.read-data, clml.time series.read-data
  • Used by: clml.test

54.1 Description

54.1.0.1 sample usage
EXPL-SMTHING(106): (setq ukgas (time-series-data (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/UKgas.sexp"))
                                                 :range '(1) :time-label 0
                                                 :frequency 4))
#<TIME-SERIES-DATASET>
DIMENSIONS: UKgas
TYPES:      NUMERIC
FREQUENCY:  4
START:      (1 1)
END:        (27 4)
POINTS:     108
TIME-LABEL: year season

EXPL-SMTHING(108): (setq model (holtwinters ukgas :seasonal :multiplicative))
#<HOLTWINTERS-MODEL>
alpha: 0.1, beta: 0.2, gamma: 0.7999999999999999
seasonal: MULTIPLICATIVE
error: 1132.6785446257877 ( MSE )

EXPL-SMTHING(109): (predict model :n-ahead 12)
#<TIME-SERIES-DATASET>
DIMENSIONS: UKgas
TYPES:      NUMERIC
FREQUENCY:  4
START:      (1 2)
END:        (30 4)
POINTS:     119

EXPL-SMTHING(110): (holtwinters-prediction ukgas :seasonal :multiplicative
                                           :n-learning 80
                                           :n-ahead 12)
#<TIME-SERIES-DATASET>
DIMENSIONS: UKgas
TYPES:      NUMERIC
FREQUENCY:  4
START:      (1 2)
END:        (30 4)
POINTS:     119
#<HOLTWINTERS-MODEL>
alpha: 0.1, beta: 0.2, gamma: 0.7999999999999999
seasonal: MULTIPLICATIVE
error: 1132.6785446257877 ( MSE )

54.2 External Symbols

54.2.1 External Functions


54.2.1.1 Inherited Function: best-double-exp-parameters
54.2.1.1.1 Syntax
(best-double-exp-parameters sequence &key (step 0.01) (measure 'mse))
54.2.1.1.2 Description

54.2.1.2 Inherited Function: best-single-exp-parameters
54.2.1.2.1 Syntax
(best-single-exp-parameters sequence &key (step 0.01) (measure 'mse))
54.2.1.2.2 Description

54.2.1.3 Inherited Function: best-triple-exp-parameters
54.2.1.3.1 Syntax
(best-triple-exp-parameters sequence &key (step 0.01) frequency (measure 'mse)
                            (seasonal additive) l)
54.2.1.3.2 Description

54.2.1.4 Inherited Function: holtwinters
54.2.1.4.1 Syntax
(holtwinters d &key alpha beta gamma (err-measure 'mse) (optim-step 0.1)
             (seasonal additive))
54.2.1.4.2 Description
  • return: <holtwinters-model>
  • arguments:
    • alpha : nil | 0 <= <double-float> <= 1
    • beta : nil | 0 <= <double-float> <= 1
    • gamma : nil | 0 <= <double-float> <= 1
    • err-measure : 'mse | 'mape | 'rae | 're | 'rr
    • optim-step : 0 <= <double-float> <= 1, step for optimizing alpha, beta and gamma
    • seasonal : :additive | :multiplicative
  • comments: when alpha, beta and gamma are nil, optimize those parameters by optim-step and err-measure.\ Minimize the value of err-measure to choose alpha, beta and gamma with optimization step specified by optim-step.\ Accordinglly, for example, optim-step = 0.001d0 takes a long time.

54.2.1.5 Inherited Function: holtwinters-prediction
54.2.1.5.1 Syntax
(holtwinters-prediction d &key alpha beta gamma (seasonal additive)
                        (err-measure 'mse) (optim-step 0.1) n-learning
                        (n-ahead 0) target-col)
54.2.1.5.2 Description
  • return: (values <time-series-dataset> <holtwinters-model>)
  • arguments:
    • d : <time-series-dataset>
    • alpha : nil | 0 <= <double-float> <= 1
    • beta : nil | 0 <= <double-float> <= 1
    • gamma : nil | 0 <= <double-float> <= 1
    • err-measure : 'mse | 'mape | 'rae | 're | 'rr
    • optim-step : 0 <= <double-float> <= 1
    • seasonal : :additive | :multiplicative
    • n-ahead : <non-negative integer>
    • n-learning : nil | <positive integer>, number of points for learning
    • target-col : nil | <string>, name of target parameter

55 Package: clml.time-series.read-data

  • Uses: common-lisp, hjs.util.meta, hjs.util.vector, hjs.learn.vars, hjs.learn.read data, hjs.util.missing-value
  • Used by: clml.test, clml.graph.graph-anomaly-detection, clml.time-series.burst-detection, clml.time-series.exponential-smoothing, clml.time-series.anomaly detection, clml.time series.changefinder, clml.time series.autoregression, clml.time series.state-space, clml.time series.statistics, clml.time-series.util

55.1 Description

Time-Series-Read-Data

package for reading time series data

55.1.0.1 sample usage
SVM.WSS3(44): (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc-train-for-svm.csv")
						 :type :csv
						 :csv-type-spec (make-list 10 :initial-element 'double-float))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
NUMBER OF DIMENSIONS: 10
DATA POINTS: 338 POINTS
SVM.WSS3(45): (setf training-vector (dataset-points (pick-and-specialize-data * :data-types (make-list 10 :initial-element :numeric))))
 #(#(5.0 4.0 4.0 5.0 7.0 10.0 3.0 2.0 1.0 1.0) #(6.0 8.0 8.0 1.0 3.0 4.0 3.0 7.0 1.0 1.0) #(8.0 10.0 10.0 8.0 7.0 10.0 9.0 7.0 1.0 -1.0)
  #(2.0 1.0 2.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) #(4.0 2.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0) #(2.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0)
  #(1.0 1.0 1.0 1.0 2.0 3.0 3.0 1.0 1.0 1.0) #(7.0 4.0 6.0 4.0 6.0 1.0 4.0 3.0 1.0 -1.0) #(4.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0)
  #(6.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) ...)
SVM.WSS3(46): (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc-test-for-svm.csv")
						 :type :csv
						 :csv-type-spec (make-list 10 :initial-element 'double-float))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
NUMBER OF DIMENSIONS: 10
DATA POINTS: 345 POINTS
SVM.WSS3(47): (setf test-vector (dataset-points (pick-and-specialize-data * :data-types (make-list 10 :initial-element :numeric))))
 #(#(5.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) #(3.0 1.0 1.0 1.0 2.0 2.0 3.0 1.0 1.0 1.0) #(4.0 1.0 1.0 3.0 2.0 1.0 3.0 1.0 1.0 1.0)
  #(1.0 1.0 1.0 1.0 2.0 10.0 3.0 1.0 1.0 1.0) #(2.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 5.0 1.0) #(1.0 1.0 1.0 1.0 1.0 1.0 3.0 1.0 1.0 1.0)
  #(5.0 3.0 3.0 3.0 2.0 3.0 4.0 4.0 1.0 -1.0) #(8.0 7.0 5.0 10.0 7.0 9.0 5.0 5.0 4.0 -1.0) #(4.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0)
  #(10.0 7.0 7.0 6.0 4.0 10.0 4.0 1.0 2.0 -1.0) ...)
SVM.WSS3(49): (setf kernel (make-rbf-kernel :gamma 0.05))
 #<Closure (:INTERNAL MAKE-RBF-KERNEL 0) @ #x101ba6a6f2>
SVM.WSS3(50): (setf svm (make-svm-learner training-vector kernel :c 10 :file-name "svm-sample" :external-format :utf-8))
 #<Closure (:INTERNAL MAKE-DISCRIMINANT-FUNCTION 0) @ #x101bc76a12>
SVM.WSS3(51): (funcall svm (svref test-vector 0))
1.0
SVM.WSS3(52): (svm-validation svm test-vector)
(((1.0 . -1.0) . 2) ((-1.0 . -1.0) . 120) ((-1.0 . 1.0) . 10) ((1.0 . 1.0) . 213))
96.52173913043478
SVM.WSS3(53): (setf svm2 (load-svm-learner "svm-sample" kernel :external-format :utf-8))
 #<Closure (:INTERNAL MAKE-DISCRIMINANT-FUNCTION 0) @ #x101be9db02>
SVM.WSS3(54): (svm-validation svm2 test-vector)
(((1.0 . -1.0) . 2) ((-1.0 . -1.0) . 120) ((-1.0 . 1.0) . 10) ((1.0 . 1.0) . 213))
96.52173913043478

55.2 External Symbols

55.2.1 External Classes


55.2.1.1 Inherited Class: time-series-dataset
55.2.1.1.1 Inheritance
  • Parent classes: specialized-dataset
  • Precedence list: time-series-dataset, specialized-dataset, dataset, standard-object, slot-object, t
  • Direct subclasses: None.
55.2.1.1.2 Description
  • accessor
    • ts-points : vector of ts-point
    • ts-freq : number of observed values per a cycle
    • ts-start : time for the first observed value, ts-point is represented as list of time and freq. Please refer to the sample usage.
    • ts-end : time for the last observed value, the form is same as ts-start.

The dataset for time-series data. Values are specialized in numeric

55.2.1.1.3 Direct Slots
55.2.1.1.3.1 Slot: frequency
  • Value type: number
  • Initial value: NIL
  • Initargs: frequency
  • Allocation: instance
55.2.1.1.3.1.1 Accessors

55.2.1.1.3.1.1.1 Inherited Slot Accessor: ts-freq
55.2.1.1.3.1.1.1.1 Syntax
(ts-freq object)
55.2.1.1.3.1.1.1.2 Methods
  • (ts-freq (time-series-dataset time-series-dataset))
55.2.1.1.3.2 Slot: start
  • Value type: t
  • Initial value: NIL
  • Initargs: start
  • Allocation: instance
55.2.1.1.3.2.1 Accessors

55.2.1.1.3.2.1.1 Inherited Slot Accessor: ts-start
55.2.1.1.3.2.1.1.1 Syntax
(ts-start object)
55.2.1.1.3.2.1.1.2 Methods
  • (ts-start (time-series-dataset time-series-dataset))
55.2.1.1.3.3 Slot: end
  • Value type: t
  • Initial value: NIL
  • Initargs: end
  • Allocation: instance
55.2.1.1.3.3.1 Accessors

55.2.1.1.3.3.1.1 Inherited Slot Accessor: ts-end
55.2.1.1.3.3.1.1.1 Syntax
(ts-end object)
55.2.1.1.3.3.1.1.2 Methods
  • (ts-end (time-series-dataset time series-dataset))
55.2.1.1.3.4 Inherited Slot: ts-type
  • Value type: t
  • Initial value: NIL
  • Initargs: ts-type
  • Allocation: instance
55.2.1.1.3.4.1 Accessors

55.2.1.1.3.4.1.1 Inherited Slot Accessor: ts-type
55.2.1.1.3.4.1.1.1 Syntax
(ts-type object)
55.2.1.1.3.4.1.1.2 Methods
  • (ts-type (time-series-dataset time-series-dataset))
55.2.1.1.3.5 Inherited Slot: ts-points
  • Value type: t
  • Initial value: NIL
  • Initargs: ts-points
  • Allocation: instance
55.2.1.1.3.5.1 Accessors

55.2.1.1.3.5.1.1 Inherited Slot Accessor: ts-points
55.2.1.1.3.5.1.1.1 Syntax
(ts-points object)
55.2.1.1.3.5.1.1.2 Methods
  • (ts-points (time-series-dataset time-series-dataset))
55.2.1.1.3.6 Inherited Slot: time-label-name
  • Value type: t
  • Initial value: NIL
  • Initargs: time-label-name
  • Allocation: instance
55.2.1.1.3.6.1 Accessors

55.2.1.1.3.6.1.1 Inherited Slot Accessor: time-label-name
55.2.1.1.3.6.1.1.1 Syntax
(time-label-name object)
55.2.1.1.3.6.1.1.2 Methods
  • (time-label-name (time-series-dataset time-series-dataset))
55.2.1.1.4 Indirect Slots
55.2.1.1.4.1 Internal Slot: dimensions
  • Value type: simple-array
  • Initial value: (ERROR "Must specify the dimension information for the dataset.")
  • Initargs: dimensions
  • Allocation: instance

55.2.2 External Functions


55.2.2.1 Inherited Function: copy-ts
55.2.2.1.1 Syntax
(copy-ts d)
55.2.2.1.2 Description

55.2.2.2 Inherited Function: make-constant-time-series-data
55.2.2.2.1 Syntax
(make-constant-time-series-data all-column-names data &key (start '(1 1)) end
                                (freq 1) time-labels time-label-name)
55.2.2.2.2 Description

55.2.2.3 Inherited Function: make-ts-point
55.2.2.3.1 Syntax
(make-ts-point time freq label pos)
55.2.2.3.2 Description

55.2.2.4 Inherited Function: tf-gap
55.2.2.4.1 Syntax
(tf-gap tf1 tf2 &key (freq 1))
55.2.2.4.2 Description

55.2.2.5 Inherited Function: tf-incl
55.2.2.5.1 Syntax
(tf-incl tf-list num &key (freq 1))
55.2.2.5.2 Description

55.2.2.6 Inherited Function: time-label-name
55.2.2.6.1 Syntax
(time-label-name object)
55.2.2.6.2 Description

55.2.2.7 Inherited Function: time-series-data
55.2.2.7.1 Syntax
(time-series-data d &key (start 1) end (frequency 1) (ts-type constant)
                  (range all) except time-label)
55.2.2.7.2 Description
  • return: <time-series-dataset>
  • arguments:
    • d : <unspecialized-dataset>
    • start : <list integer integer> | integer, specify the start time, integer larger than 1 or a list of integer of such kind. e.g. (1861 3)
    • end : <list integer integer> | integer, specify the end time, format same as start. When unspecified, all the lines will be read in.
    • frequency : integer >= 1, specify the frequency
    • range : :all | <list integer>, indices of columns used in the result, start from 0, e.g. '(0 1 3 4)
    • except : <list integer>, the opposite of :range, indices of columns which will be excluded from the result, start from 0. e.g. '(2)
    • time-label : integer, index of column which represents the labels of time series data points, no labels when not specified.

55.2.2.8 Inherited Function: ts-cleaning
55.2.2.8.1 Syntax
(ts-cleaning d &key interp-types-alist outlier-types-alist outlier-values-alist)
55.2.2.8.2 Description
  • return: <time-series-dataset>
  • arguments:
    • d : <time-series-dataset>
    • interp-types-alist : a-list (key: column name, datum: interpolation(:zero :min :max :mean :median :mode :spline)) | nil\
    • outlier-types-alist : a-list (key: column name, datum: outlier-verification(:std-dev :mean-dev :user :smirnov-grubbs :freq)) | nil\
    • outlier-values-alist : a-list (key: outlier-verification datum: the value according to outlier-verification) | nil
  • comment: Same as dataset-cleaning in read-data package.

55.2.2.9 Inherited Function: ts-end
55.2.2.9.1 Syntax
(ts-end object)
55.2.2.9.2 Description

55.2.2.10 Inherited Function: ts-freq
55.2.2.10.1 Syntax
(ts-freq object)
55.2.2.10.2 Description

55.2.2.11 Inherited Function: ts-p-freq
55.2.2.11.1 Syntax
(ts-p-freq instance)
55.2.2.11.2 Description

55.2.2.12 Inherited Function: ts-p-label
55.2.2.12.1 Syntax
(ts-p-label instance)
55.2.2.12.2 Description

55.2.2.13 Inherited Function: ts-p-pos
55.2.2.13.1 Syntax
(ts-p-pos instance)
55.2.2.13.2 Description

55.2.2.14 Inherited Function: ts-p-time
55.2.2.14.1 Syntax
(ts-p-time instance)
55.2.2.14.2 Description

55.2.2.15 Inherited Function: ts-points
55.2.2.15.1 Syntax
(ts-points object)
55.2.2.15.2 Description

55.2.2.16 Inherited Function: ts-start
55.2.2.16.1 Syntax
(ts-start object)
55.2.2.16.2 Description

55.2.2.17 Inherited Function: ts-type
55.2.2.17.1 Syntax
(ts-type object)
55.2.2.17.2 Description

56 Package: clml.time-series.state-space

  • Uses: common-lisp, hjs.learn.read-data, hjs.util.meta, hjs.util.vector, hjs.util.matrix, clml.statistics, clml.time series.util, clml.time series.statistics, clml.time series.read-data, hjs.util.missing-value
  • Used by: clml.test, clml.graph.graph-anomaly-detection, clml.time-series.anomaly-detection, clml.time-series.autoregression

56.1 Description

Package for state space model. Classes and methods for representing various time series model. Reference: 時系列解析入門 著:北川源四郎 岩波書店 9 章以降

56.1.0.1 sample usage
TS-STSP(123): (defparameter tokyo
                 (time-series-data
                  (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/tokyo-temperature.sexp"))))
TOKYO

TS-STSP(7): (trend tokyo :k 2 :opt-t^2 t)
#<TREND-MODEL>
K:   2
T^2: 0.1
AIC: 2395.073754930766

TS-STSP(8): (predict * :n-ahead 10)
#<TIME-SERIES-DATASET>
DIMENSIONS: trend
TYPES:      NUMERIC
FREQUENCY:  1
START:      (1 1)
END:        (458 1)
POINTS:     458
#<TIME-SERIES-DATASET>
DIMENSIONS: standard error
TYPES:      NUMERIC
FREQUENCY:  1
START:      (1 1)
END:        (458 1)
POINTS:     458

56.2 External Symbols

56.2.1 External Functions


56.2.1.1 Inherited Function: seasonal
56.2.1.1.1 Syntax
(seasonal d &key (degree 1) freq (t^2 0.0) (s^2 1.0))
56.2.1.1.2 Description

56.2.1.2 Inherited Function: seasonal-adj
56.2.1.2.1 Syntax
(seasonal-adj d &key (tr-k 1) (tr-t^2 0.0) (s-deg 1) s-freq (s-t^2 0.0)
              (s^2 1.0))
56.2.1.2.2 Description

56.2.1.3 Inherited Function: trend
56.2.1.3.1 Syntax
(trend d &key (k 1) (t^2 0.0) (opt-t^2 nil) (s^2 1.0) (delta 0.1)
       (search-width 10))
56.2.1.3.2 Description
  • return: <trend-model>
  • arguments:
    • d : <time-series-dataset>
    • k : <positive-integer>
    • t2 : <positive-number>
    • opt-t2 : nil | t
    • delta : <positive-number>
    • search-width : <positive-integer>
  • comments:
    • In general, degree for model k is 1 or 2. When k = 1, assume the trend is locally fixed. When k = 2, assume the trend is locally linear.
    • When opt-t2 is t, t2 is automatically estimated according to delta and search-width.\ In the range t2 - delta * search-width <= t2 + delta * search-width, minimize AIC of the model.\ And delta decides the step for t2.

56.2.1.4 Inherited Function: trend-prediction
56.2.1.4.1 Syntax
(trend-prediction d &key (k 1) (t^2 0.1) (n-ahead 0) (delta 0.1)
                  (search-width 10))
56.2.1.4.2 Description

57 Package: clml.time-series.statistics

  • Uses: common-lisp, hjs.learn.read-data, hjs.util.meta, hjs.util.vector, hjs.util.matrix, clml.statistics, hjs.learn.vars, clml.time-series.read-data, clml.time-series.util, clml.numeric.fast-fourier-transform
  • Used by: clml.test, clml.graph.graph-anomaly-detection, clml.time-series.burst-detection, clml.time-series.exponential-smoothing, clml.time-series.anomaly detection, clml.time series.changefinder, clml.time series.autoregression, clml.time series.state-space

57.1 Description

Time-Series-Statistics Package for statistic utils for time-series-dataset.

57.1.0.1 sample usage
SVM.WSS3(44): (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc-train-for-svm.csv")
						 :type :csv
						 :csv-type-spec (make-list 10 :initial-element 'double-float))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
NUMBER OF DIMENSIONS: 10
DATA POINTS: 338 POINTS
SVM.WSS3(45): (setf training-vector (dataset-points (pick-and-specialize-data * :data-types (make-list 10 :initial-element :numeric))))
 #(#(5.0 4.0 4.0 5.0 7.0 10.0 3.0 2.0 1.0 1.0) #(6.0 8.0 8.0 1.0 3.0 4.0 3.0 7.0 1.0 1.0) #(8.0 10.0 10.0 8.0 7.0 10.0 9.0 7.0 1.0 -1.0)
  #(2.0 1.0 2.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) #(4.0 2.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0) #(2.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0)
  #(1.0 1.0 1.0 1.0 2.0 3.0 3.0 1.0 1.0 1.0) #(7.0 4.0 6.0 4.0 6.0 1.0 4.0 3.0 1.0 -1.0) #(4.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0)
  #(6.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) ...)
SVM.WSS3(46): (read-data-from-file (clml.utility.data:fetch "https://mmaul.github.io/clml.data/sample/bc-test-for-svm.csv")
						 :type :csv
						 :csv-type-spec (make-list 10 :initial-element 'double-float))
 #<UNSPECIALIZED-DATASET>
DIMENSIONS: Cl.thickness | Cell.size | Cell.shape | Marg.adhesion | Epith.c.size | Bare.nuclei | Bl.cromatin | Normal.nucleoli | Mitoses | Class
TYPES:      UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN | UNKNOWN
NUMBER OF DIMENSIONS: 10
DATA POINTS: 345 POINTS
SVM.WSS3(47): (setf test-vector (dataset-points (pick-and-specialize-data * :data-types (make-list 10 :initial-element :numeric))))
 #(#(5.0 1.0 1.0 1.0 2.0 1.0 3.0 1.0 1.0 1.0) #(3.0 1.0 1.0 1.0 2.0 2.0 3.0 1.0 1.0 1.0) #(4.0 1.0 1.0 3.0 2.0 1.0 3.0 1.0 1.0 1.0)
  #(1.0 1.0 1.0 1.0 2.0 10.0 3.0 1.0 1.0 1.0) #(2.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 5.0 1.0) #(1.0 1.0 1.0 1.0 1.0 1.0 3.0 1.0 1.0 1.0)
  #(5.0 3.0 3.0 3.0 2.0 3.0 4.0 4.0 1.0 -1.0) #(8.0 7.0 5.0 10.0 7.0 9.0 5.0 5.0 4.0 -1.0) #(4.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0)
  #(10.0 7.0 7.0 6.0 4.0 10.0 4.0 1.0 2.0 -1.0) ...)
SVM.WSS3(49): (setf kernel (make-rbf-kernel :gamma 0.05))
 #<Closure (:INTERNAL MAKE-RBF-KERNEL 0) @ #x101ba6a6f2>
SVM.WSS3(50): (setf svm (make-svm-learner training-vector kernel :c 10 :file-name "svm-sample" :external-format :utf-8))
 #<Closure (:INTERNAL MAKE-DISCRIMINANT-FUNCTION 0) @ #x101bc76a12>
SVM.WSS3(51): (funcall svm (svref test-vector 0))
1.0
SVM.WSS3(52): (svm-validation svm test-vector)
(((1.0 . -1.0) . 2) ((-1.0 . -1.0) . 120) ((-1.0 . 1.0) . 10) ((1.0 . 1.0) . 213))
96.52173913043478
SVM.WSS3(53): (setf svm2 (load-svm-learner "svm-sample" kernel :external-format :utf-8))
 #<Closure (:INTERNAL MAKE-DISCRIMINANT-FUNCTION 0) @ #x101be9db02>
SVM.WSS3(54): (svm-validation svm2 test-vector)
(((1.0 . -1.0) . 2) ((-1.0 . -1.0) . 120) ((-1.0 . 1.0) . 10) ((1.0 . 1.0) . 213))
96.52173913043478

57.2 External Symbols

57.2.1 External Functions


57.2.1.1 Inherited Function: acf
57.2.1.1.1 Syntax
(acf d &key (type correlation) (plot nil) (print t) max-k)
57.2.1.1.2 Description
  • return: nil | <list>
  • arguments:
    • d : <time-series-dataset>
    • type : :covariance | :correlation
    • max-k : <positive integer>
    • plot : nil | t, when plot is t, result will be plotted by R.
    • print : nil | t, when print is t, result will be printed.

57.2.1.2 Inherited Function: ccf
57.2.1.2.1 Syntax
(ccf d1 d2 &key (type correlation) (plot nil) (print t) max-k)
57.2.1.2.2 Description
  • return: nil | <list>
  • arguments:
    • d1, d2 : <time-series-dataset>, one dimensional
    • type : :covariance | :correlation
    • max-k : <positive integer>
    • plot : nil | t, when plot is t, result picture will be plotted by R.
    • print : nil | t, when print is t, result will be printed.

57.2.1.3 Inherited Function: diff
57.2.1.3.1 Syntax
(diff d &key (lag 1) (differences 1))
57.2.1.3.2 Description
  • return: <time-series-dataset>
  • arguments:
    • d : <time-series-dataset>
    • lag : <integer>, degree of lag
    • differences : <integer> >= 1, number of difference
  • comments: Calculate the Difference. e.g. Suppose the trend of time-series-dataset is linear. It will be eliminated by differences = 1.

57.2.1.4 Inherited Function: lag
57.2.1.4.1 Syntax
(lag d &key (k 1))
57.2.1.4.2 Description

57.2.1.5 Inherited Function: ma
57.2.1.5.1 Syntax
(ma d &key (k 5) weight)
57.2.1.5.2 Description
  • return: <time-series-dataset>
  • arguments:
    • d : <time-series-dataset>, one dimensional
    • k : <positive integer>, range of calculation for average
    • weight : nil | <list>, when weight is nil, it will be all same weight.

57.2.1.6 Inherited Function: periodgram
57.2.1.6.1 Syntax
(periodgram d &key step (print t) (plot nil) (log t) (smoothing raw))
57.2.1.6.2 Description

57.2.1.7 Inherited Function: ts-correlation
57.2.1.7.1 Syntax
(ts-correlation d &key (k 0))
57.2.1.7.2 Description
  • return: <matrix>, auto-correlation matrix with lag k
  • arguments:
    • d : <time-series-dataset>
    • k : <positive integer>, degree of lag

57.2.1.8 Inherited Function: ts-covariance
57.2.1.8.1 Syntax
(ts-covariance d &key (k 0) (demean t))
57.2.1.8.2 Description
  • return: <matrix>, auto-covariance or auto-correlation matrix with lag k
  • arguments:
    • d : <time-series-dataset>
    • k : <positive integer>, degree of lag

57.2.1.9 Inherited Function: ts-demean
57.2.1.9.1 Syntax
(ts-demean d)
57.2.1.9.2 Description
  • argument: <time-series-dataset>

57.2.1.10 Inherited Function: ts-log
57.2.1.10.1 Syntax
(ts-log d &key (logit-transform nil) (log-base (exp 1)))
57.2.1.10.2 Description
  • return: <time-series-dataset>
  • arguments:
    • d : <time-series-dataset>
    • logit-transform : t | nil, logit transformation is effective for (0, 1) values ts data

57.2.1.11 Inherited Function: ts-max
57.2.1.11.1 Syntax
(ts-max d)
57.2.1.11.2 Description
  • argument: <time-series-dataset>

57.2.1.12 Inherited Function: ts-mean
57.2.1.12.1 Syntax
(ts-mean d)
57.2.1.12.2 Description
  • argument: <time-series-dataset>

57.2.1.13 Inherited Function: ts-median
57.2.1.13.1 Syntax
(ts-median d)
57.2.1.13.2 Description
  • argument: <time-series-dataset>

57.2.1.14 Inherited Function: ts-min
57.2.1.14.1 Syntax
(ts-min d)
57.2.1.14.2 Description
  • argument: <time-series-dataset>

57.2.1.15 Inherited Function: ts-ratio
57.2.1.15.1 Syntax
(ts-ratio d &key (lag 1))
57.2.1.15.2 Description

58 Package: clml.time-series.util

  • Uses: common-lisp, hjs.learn.read-data, hjs.util.meta, hjs.util.vector, hjs.util.matrix, clml.statistics, clml.time-series.read-data
  • Used by: clml.test, clml.graph.graph-anomaly-detection, clml.time-series.burst-detection, clml.time-series.exponential-smoothing, clml.time-series.anomaly detection, clml.time series.changefinder, clml.time series.autoregression, clml.time series.state-space, clml.time series.statistics

58.1 Description

Utility generally relating to

  • Time conversion
  • String manip
  • External Program invocation

Regarding external program invocation, work needs to be done, nameley converting alisp specific calls to uiop. Also external program invocation is used to spawn R for graph generation. Would be better to use

58.2 External Symbols

58.2.1 External Classes


58.2.1.1 Inherited Class: timeseries-model
58.2.1.1.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: timeseries-model, standard object, slot-object, t
  • Direct subclasses: holtwinters-model, state-space-model
58.2.1.1.2 Description
58.2.1.1.3 Direct Slots
58.2.1.1.3.1 Inherited Slot: observed-ts
  • Value type: time-series-dataset
  • Initial value: (ERROR "Must specify the observed timeseries data")
  • Initargs: observed-ts
  • Allocation: instance
58.2.1.1.3.1.1 Accessors

58.2.1.1.3.1.1.1 Inherited Slot Accessor: observed-ts
58.2.1.1.3.1.1.1.1 Syntax
(observed-ts object)
58.2.1.1.3.1.1.1.2 Methods
  • (observed-ts (timeseries-model timeseries model))

58.2.2 External Global Variables


58.2.2.1 Inherited Variable: *r-stream*
58.2.2.1.1 Value
NIL

Type: null

58.2.2.1.2 Description

58.2.3 External Macros


58.2.3.1 Inherited Macro: with-r
58.2.3.1.1 Syntax
(with-r &rest body)
58.2.3.1.2 Description

58.2.4 External Functions


58.2.4.1 Inherited Function: compose-ts
58.2.4.1.1 Syntax
(compose-ts d &key (range all) except (composer #'+)
            (column-name composed value))
58.2.4.1.2 Description

58.2.4.2 Inherited Function: date-time-to-ut
58.2.4.2.1 Syntax
(date-time-to-ut date-time &optional daylight-saving-time-p)
58.2.4.2.2 Description

58.2.4.3 Inherited Function: draw-ppm
58.2.4.3.1 Syntax
(draw-ppm data-list fname &key (width-unit 10) (height-unit 10))
58.2.4.3.2 Description

58.2.4.4 Inherited Function: merge-ts
58.2.4.4.1 Syntax
(merge-ts d1 d2)
58.2.4.4.2 Description

58.2.4.5 Inherited Function: observed-ts
58.2.4.5.1 Syntax
(observed-ts object)
58.2.4.5.2 Description

58.2.4.6 Inherited Function: open-eps-file
58.2.4.6.1 Syntax
(open-eps-file f-name)
58.2.4.6.2 Description

58.2.4.7 Inherited Function: predict
58.2.4.7.1 Syntax
(predict m &key (n-ahead 0) (n-ahead 0) (n-ahead 0))
58.2.4.7.2 Description
  • return: <time-series-dataset>
  • arguments:
    • model : <holtwinters-model>
    • n-ahead : <non-negative integer>

58.2.4.8 Inherited Function: statvis
58.2.4.8.1 Syntax
(statvis ts &key (external-format default) (fname temp))
58.2.4.8.2 Description

58.2.4.9 Inherited Function: sub-ts
58.2.4.9.1 Syntax
(sub-ts d &key start end (range all) except)
58.2.4.9.2 Description

58.2.4.10 Inherited Function: ts-
58.2.4.10.1 Syntax
(ts- d1 d2)
58.2.4.10.2 Description

58.2.4.11 Inherited Function: ts-to-sta
58.2.4.11.1 Syntax
(ts-to-sta d f-name &key (external-format default) (fit t))
58.2.4.11.2 Description

58.2.4.12 Inherited Function: ut-to-date-time
58.2.4.12.1 Syntax
(ut-to-date-time ut &optional daylight-saving-time-p)
58.2.4.12.2 Description

59 Package: clml.utility.csv

  • Uses: common-lisp, iterate, org.mapcar.parse-number
  • Used by: clml.graph.graph-anomaly detection, clml.time series.anomaly-detection

59.1 Description

59.2 External Symbols

59.2.1 External Functions


59.2.1.1 Function: read-csv-file
59.2.1.1.1 Syntax
(read-csv-file filename &key (header t) type-spec map-fns
               (external-format *csv-default-external-format*) (os anynl-dos)
               (start 0) end)
59.2.1.1.2 Description

Read from stream until eof and return a csv table.

A csv table is a vector of csv records. A csv record is a vector of elements.

Type spec should be a list of type specifier (symbols). If the type specifier is nil or t, it will be treated as string. If type-spec is nil (the default case), then all will be treated as string.

map-fns is a list of functions of one argument and output one result. each function in it will be applied to the parsed element. If any function in the list is nil or t, it equals to #'identity. If map-fns is nil, then nothing will be applied.

external-format (default is shift-jis) is a valid AllegroCL external-format type.

OS is a set to eol-convention of the file stream.

start and end specifies how many elements per record will be included. If start or end is negative, it counts from the end. -1 is the last element.


59.2.1.2 Function: read-csv-file-and-sort
59.2.1.2.1 Syntax
(read-csv-file-and-sort filename sort-order &key (header t) (order ascend)
                        type-spec map-fns
                        (external-format *csv-default-external-format*))
59.2.1.2.2 Description

59.2.1.3 Function: read-csv-stream
59.2.1.3.1 Syntax
(read-csv-stream stream &key (header t) type-spec map-fns (start 0) end)
59.2.1.3.2 Description

Read from stream until eof and return a csv table.

A csv table is a vector of csv records. A csv record is a vector of elements.

Type spec should be a list of type specifier (symbols). If the type specifier is nil or t, it will be treated as string. If type-spec is nil (the default case), then all will be treated as string.

map-fns is a list of functions of one argument and output one result. each function in it will be applied to the parsed element. If any function in the list is nil or t, it equals to #'identity. If map-fns is nil, then nothing will be applied.

start and end specifies how many elements per record will be included. If start or end is negative, it counts from the end. -1 is the last element.


59.2.1.4 Function: write-csv-file
59.2.1.4.1 Syntax
(write-csv-file filename table &key
                (external-format *csv-default-external-format*))
59.2.1.4.2 Description

Accept a filename and a table and output the table as csv form to the file.

A table is a sequence of lines. A line is a sequence of elements. Elements can be any types


59.2.1.5 Function: write-csv-stream
59.2.1.5.1 Syntax
(write-csv-stream stream table)
59.2.1.5.2 Description

Accept a stream and a table and output the table as csv form to the stream.

A table is a sequence of lines. A line is a sequence of elements. Elements can be any types

60 Package: clml.utility.data

  • Uses: common-lisp
  • Used by: None.

60.1 Description

60.2 External Symbols

60.2.1 External Functions


60.2.1.1 Function: fetch
60.2.1.1.1 Syntax
(fetch url-or-path &key (cache t)
       (dir (namestring (system-relative-pathname 'clml sample/))) (flush nil))
60.2.1.1.2 Description

-return: path to file or nil if unable to fetch -arguments: -url-or-path: <string> pathname or url string identifying file to be fetched. -cache: <T|NIL> if T looks for file in -dir and uses that as source if NIL then the a fresh copy of the file is fetched -dir: location to store fetched file, default location is in the sample directory in the top level of the clml source tree. -flush: if T fetch does not download the file it deletes the existing file.

Fetch file from url-or-location if not cached in dir stores the file in the location specified by dir if url or file is url the file is stored in dir~/~uri-host~/~uri-path.

Note that it is important to ensure that dir and subdir if used end in a /

61 Package: clml.utility.priority-que

  • Uses: common-lisp
  • Used by: clml.graph.shortest-path, clml.nearest-search.nearest

61.1 Description

61.2 External Symbols

61.2.1 External Functions


61.2.1.1 Function: after-decrease-key-prique
61.2.1.1.1 Syntax
(after-decrease-key-prique q ib)
61.2.1.1.2 Description

61.2.1.2 Function: delete-min-prique
61.2.1.2.1 Syntax
(delete-min-prique q)
61.2.1.2.2 Description

61.2.1.3 Function: find-min-prique
61.2.1.3.1 Syntax
(find-min-prique q)
61.2.1.3.2 Description

61.2.1.4 Function: insert-prique
61.2.1.4.1 Syntax
(insert-prique q item)
61.2.1.4.2 Description

61.2.1.5 Function: make-prique
61.2.1.5.1 Syntax
(make-prique implementation &key (maxcount nil) (lessp #'<) (key #'identity))
61.2.1.5.2 Description

61.2.1.6 Function: prique-box-item
61.2.1.6.1 Syntax
(prique-box-item q)
61.2.1.6.2 Description

61.2.1.7 Function: prique-empty-p
61.2.1.7.1 Syntax
(prique-empty-p q)
61.2.1.7.2 Description

61.2.1.8 Function: union-prique
61.2.1.8.1 Syntax
(union-prique q1 q2)
61.2.1.8.2 Description

62 Package: fork-future

  • Uses: common-lisp
  • Used by: None.

62.1 Description

62.2 External Symbols

62.2.1 External Classes


62.2.1.1 Internal Class: future
62.2.1.1.1 Inheritance
  • Parent classes: standard-object
  • Precedence list: future, standard-object, slot-object, t
  • Direct subclasses: None.
62.2.1.1.2 Description
62.2.1.1.3 Direct Slots
62.2.1.1.3.1 Slot: pid
  • Value type: t
  • Initial value: NIL
  • Initargs: pid
  • Allocation: instance
62.2.1.1.3.1.1 Accessors

62.2.1.1.3.1.1.1 Slot Accessor: pid-of
62.2.1.1.3.1.1.1.1 Syntax
(pid-of object)
62.2.1.1.3.1.1.1.2 Methods
  • (pid-of (future fork-future:future))
62.2.1.1.3.2 Slot: code
  • Value type: t
  • Initial value: (ERROR "Must provide code for future")
  • Initargs: code
  • Allocation: instance
62.2.1.1.3.2.1 Accessors

62.2.1.1.3.2.1.1 Slot Accessor: code-of
62.2.1.1.3.2.1.1.1 Syntax
(code-of object)
62.2.1.1.3.2.1.1.2 Methods
  • (code-of (future fork-future:future))
62.2.1.1.3.3 Inherited Slot: lambda
  • Value type: t
  • Initial value: (ERROR "Must provide lambda for future")
  • Initargs: lambda
  • Allocation: instance
62.2.1.1.3.3.1 Accessors

62.2.1.1.3.3.1.1 Slot Accessor: lambda-of
62.2.1.1.3.3.1.1.1 Syntax
(lambda-of object)
62.2.1.1.3.3.1.1.2 Methods
  • (lambda-of (future fork-future:future))
62.2.1.1.3.4 Internal Slot: result
  • Value type: t
  • Initial value: ='FORK-FUTURE::UNBOUND=
  • Initargs: none
  • Allocation: instance
62.2.1.1.3.4.1 Accessors

62.2.1.1.3.4.1.1 Slot Accessor: result-of
62.2.1.1.3.4.1.1.1 Syntax
(result-of object)
62.2.1.1.3.4.1.1.2 Methods
  • (result-of (future fork-future:future))
62.2.1.1.3.5 Slot: exit-status
  • Value type: t
  • Initial value: ='FORK-FUTURE::UNKNOWN=
  • Initargs: none
  • Allocation: instance
62.2.1.1.3.5.1 Accessors

62.2.1.1.3.5.1.1 Slot Accessor: exit-status-of
62.2.1.1.3.5.1.1.1 Syntax
(exit-status-of object)
62.2.1.1.3.5.1.1.2 Methods
  • (exit-status-of (future fork future:future))

62.2.2 External Global Variables


62.2.2.1 Variable: *after-fork-hooks*
62.2.2.1.1 Value
(FORK-FUTURE::CLOSE-SWANK-CONNECTIONS)

Type: cons

62.2.2.1.2 Description

62.2.2.2 Variable: *before-fork-hooks*
62.2.2.2.1 Value
NIL

Type: null

62.2.2.2.2 Description

62.2.2.3 Variable: *fork-future-max-processes*
62.2.2.3.1 Value
4

Type: integer

62.2.2.3.2 Description

62.2.2.4 Variable: *future-result-file-template*
62.2.2.4.1 Value
"/tmp/future-result.~d.tmp~~"

Type: simple-array

62.2.2.4.2 Description

62.2.3 External Macros


62.2.3.1 Internal Macro: future
62.2.3.1.1 Syntax
(future
  &body
  body)
62.2.3.1.2 Description

Evaluate expr in parallel using a forked child process. Returns a 'future' object whose value can be retrieved using touch. No side-effects made in <expr> will be visible from the calling process.


62.2.3.2 Macro: with-new-environment
62.2.3.2.1 Syntax
(with-new-environment nil
  &body
  body)
62.2.3.2.2 Description

62.2.4 External Functions


62.2.4.1 Function: initialize-environment
62.2.4.1.1 Syntax
(initialize-environment &key kill-current-futures-p force-p)
62.2.4.1.2 Description

62.2.4.2 Function: kill-all-futures
62.2.4.2.1 Syntax
(kill-all-futures &optional force)
62.2.4.2.2 Description

62.2.4.3 Function: kill-future
62.2.4.3.1 Syntax
(kill-future future &optional force)
62.2.4.3.2 Description

62.2.4.4 Function: touch
62.2.4.4.1 Syntax
(touch future)
62.2.4.4.2 Description

62.2.4.5 Function: wait-for-all-futures
62.2.4.5.1 Syntax
(wait-for-all-futures)
62.2.4.5.2 Description

62.2.4.6 Function: wait-for-any-future
62.2.4.6.1 Syntax
(wait-for-any-future &optional error-p (warn-p t))
62.2.4.6.2 Description

62.2.4.7 Function: wait-for-future
62.2.4.7.1 Syntax
(wait-for-future future)
62.2.4.7.2 Description

62.3 Ambiguous Symbols

62.3.1 Future

Disambiguation.

  • Macro: fork-future:future
  • Class: fork-future:future
  • Package: fork-future:future

63 Package: future

  • Uses: common-lisp
  • Used by: None.

63.1 Description

63.2 External Symbols

63.2.1 External Structures


63.2.1.1 Internal Structure: future
63.2.1.1.1 Description
63.2.1.1.2 Slots

63.2.2 External Global Variables


63.2.2.1 Variable: *after-finish-hooks*
63.2.2.1.1 Value
NIL

Type: null

63.2.2.1.2 Description

63.2.2.2 Variable: *before-start-hooks*
63.2.2.2.1 Value
NIL

Type: null

63.2.2.2.2 Description

63.2.3 External Macros


63.2.3.1 Internal Macro: future
63.2.3.1.1 Syntax
(future
  &body
  body)
63.2.3.1.2 Description

63.2.3.2 Macro: with-new-environment
63.2.3.2.1 Syntax
(with-new-environment nil
  &body
  body)
63.2.3.2.2 Description

63.2.4 External Functions


63.2.4.1 Function: future-funcall
63.2.4.1.1 Syntax
(future-funcall function &optional args future)
63.2.4.1.2 Description

63.2.4.2 Function: future-max-threads
63.2.4.2.1 Syntax
(future-max-threads)
63.2.4.2.2 Description

63.2.4.3 Function: initialize-environment
63.2.4.3.1 Syntax
(initialize-environment &key kill-current-futures-p)
63.2.4.3.2 Description

63.2.4.4 Function: kill-all-futures
63.2.4.4.1 Syntax
(kill-all-futures)
63.2.4.4.2 Description

63.2.4.5 Function: kill-future
63.2.4.5.1 Syntax
(kill-future future)
63.2.4.5.2 Description

63.2.4.6 Function: touch
63.2.4.6.1 Syntax
(touch future)
63.2.4.6.2 Description

63.2.4.7 Function: wait-for-all-futures
63.2.4.7.1 Syntax
(wait-for-all-futures futures)
63.2.4.7.2 Description

63.2.4.8 Function: wait-for-any-future
63.2.4.8.1 Syntax
(wait-for-any-future)
63.2.4.8.2 Description

63.2.4.9 Function: wait-for-future
63.2.4.9.1 Syntax
(wait-for-future future)
63.2.4.9.2 Description

63.3 Ambiguous Symbols

63.3.1 Future

Disambiguation.

  • Macro: future:future
  • Structure: future:future
  • Package: future:future

64 Package: hjs.learn.k-means

  • Uses: common-lisp, hjs.util.vector, hjs.util.meta, hjs.learn.read-data, clml.statistics, hjs.util.matrix, iterate, hjs.learn.vars
  • Used by: clml.test, clml.clustering.cluster-validation

64.1 Description

64.1.0.1 sample usage

64.2 External Symbols

64.2.1 External Structures


64.2.1.1 Inherited Structure: cluster
64.2.1.1.1 Description
64.2.1.1.2 Slots
64.2.1.1.2.1 Inherited Slot: id
  • Value type: id
  • Initial value: -1
  • Initargs: none
  • Allocation: instance
64.2.1.1.2.2 Internal Slot: center
  • Value type: dvec
  • Initial value: #()
  • Initargs: none
  • Allocation: instance
64.2.1.1.2.3 Slot: old-center
  • Value type: dvec
  • Initial value: #()
  • Initargs: none
  • Allocation: instance
64.2.1.1.2.4 Internal Slot: size
  • Value type: fixnum
  • Initial value: 0
  • Initargs: none
  • Allocation: instance
64.2.1.1.2.5 Slot: points
  • Value type: list
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

64.2.1.2 Inherited Structure: point
64.2.1.2.1 Description
64.2.1.2.2 Slots
64.2.1.2.2.1 Inherited Slot: id
  • Value type: id
  • Initial value: -1
  • Initargs: none
  • Allocation: instance
64.2.1.2.2.2 Inherited Slot: pos
  • Value type: dvec
  • Initial value: #()
  • Initargs: none
  • Allocation: instance
64.2.1.2.2.3 Inherited Slot: owner
  • Value type: t
  • Initial value: NIL
  • Initargs: none
  • Allocation: instance

64.2.2 External Types


64.2.2.1 Inherited Type: id

64.2.3 External Functions


64.2.3.1 Inherited Function: %make-point
64.2.3.1.1 Syntax
(%make-point id pos)
64.2.3.1.2 Description

64.2.3.2 Inherited Function: c-center
64.2.3.2.1 Syntax
(c-center instance)
64.2.3.2.2 Description

64.2.3.3 Inherited Function: c-points
64.2.3.3.1 Syntax
(c-points instance)
64.2.3.3.2 Description

64.2.3.4 Inherited Function: c-size
64.2.3.4.1 Syntax
(c-size instance)
64.2.3.4.2 Description

64.2.3.5 Inherited Function: copy-point
64.2.3.5.1 Syntax
(copy-point instance)
64.2.3.5.2 Description

64.2.3.6 Inherited Function: get-cluster-centroids
64.2.3.6.1 Syntax
(get-cluster-centroids object)
64.2.3.6.2 Description

64.2.3.7 Inherited Function: get-cluster-points
64.2.3.7.1 Syntax
(get-cluster-points object cid)
64.2.3.7.2 Description

64.2.3.8 Inherited Function: k-means
64.2.3.8.1 Syntax
(k-means k d &key (distance-fn *distance-function*) standardization
         (max-iteration *max-iteration*) (num-of-trials *num-of-trials*)
         (random-state *k-means-random-state*) debug)
64.2.3.8.2 Description
  • return: (best-result table)
    • best-result : points, clusters, distance infomation, etc.
    • table : lookup table for normalized vecs and original vecs, might be removed later.
  • arguments:
    • k : <integer>, number of clusters
    • dataset : <numeric-dataset> | <category-dataset> | <numeric-or-category-dataset>
    • distance-fn : #'euclid-distance | #'manhattan-distance | #'cosine-distance
    • standardization : t | nil, whether to standardize the inputs
    • max-iteration : maximum number of iterations of one trial
    • num-of-trials : number of trials, every trial changes the initial position of the clusters
    • random-state : (for testing), specify the random-state of the random number generator
    • debug : (for debugging) print out some debugging information

64.2.3.9 Inherited Function: make-cluster
64.2.3.9.1 Syntax
(make-cluster id center)
64.2.3.9.2 Description

64.2.3.10 Inherited Function: make-random-state-with-seed
64.2.3.10.1 Syntax
(make-random-state-with-seed seed)
64.2.3.10.2 Description

64.2.3.11 Inherited Function: p-owner
64.2.3.11.1 Syntax
(p-owner instance)
64.2.3.11.2 Description

64.2.3.12 Inherited Function: p-pos
64.2.3.12.1 Syntax
(p-pos instance)
64.2.3.12.2 Description

64.2.3.13 Inherited Function: pw-clusters
64.2.3.13.1 Syntax
(pw-clusters instance)
64.2.3.13.2 Description

64.2.3.14 Inherited Function: pw-points
64.2.3.14.1 Syntax
(pw-points instance)
64.2.3.14.2 Description

64.3 Ambiguous Symbols

64.3.1 K-Means

Disambiguation.

  • Function: k-means
  • Package: k-means

65 Package: hjs.learn.read-data

  • Uses: common-lisp, hjs.util.meta, hjs.util.vector, hjs.learn.vars, hjs.util.matrix, hjs.util.missing-value
  • Used by: clml.test, clml.text.utilities, clml.association-rule, clml.graph.graph-anomaly-detection, clml.graph.shortest-path, clml.time-series.burst-detection, clml.time-series.exponential-smoothing, clml.time-series.anomaly detection, clml.time series.changefinder, clml.time series.autoregression, clml.time series.state-space, clml.time series.statistics, clml.time-series.util, clml.time-series.read-data, clml.classifiers.nbayes, clml.classifiers.logistic-regression, clml.classifiers.linear regression, clml.clustering.optics, clml.clustering.nmf, clml.clustering.hc, clml.nearest-search.k-nn-new, clml.nearest-search.nearest, clml.nearest-search.k-nn, clml.svm.svr, clml.svm.smo, clml.svm.pwss3, clml.svm.one class, clml.svm.wss3, clml.pca, clml.decision tree.random-forest, clml.decision tree.decision-tree, hjs.learn.k-means

65.1 Description

package for reading data for machine learning

65.2 External Symbols

65.2.1 External Classes


65.2.1.1 Inherited Class: numeric-and-category-dataset
65.2.1.1.1 Inheritance
  • Parent classes: numeric-dataset, category dataset
  • Precedence list: numeric-and-category-dataset, numeric-dataset, category dataset, specialized-dataset, dataset, standard-object, slot-object, t
  • Direct subclasses: None.
65.2.1.1.2 Description

Dataset specialized in both numeric and category values.

65.2.1.1.3 Direct Slots
65.2.1.1.4 Indirect Slots
65.2.1.1.4.1 Slot: numeric-points
  • Value type: simple-array
  • Initial value: (ERROR "Must specify points of the dataset.")
  • Initargs: numeric-points
  • Allocation: instance
65.2.1.1.4.2 Slot: category-points
  • Value type: simple-array
  • Initial value: (ERROR "Must specify points of the dataset.")
  • Initargs: category-points
  • Allocation: instance
65.2.1.1.4.3 Internal Slot: dimensions
  • Value type: simple-array
  • Initial value: (ERROR "Must specify the dimension information for the dataset.")
  • Initargs: dimensions
  • Allocation: instance

65.2.1.2 Inherited Class: numeric-dataset
65.2.1.2.1 Inheritance
  • Parent classes: specialized-dataset
  • Precedence list: numeric-dataset, specialized-dataset, dataset, standard-object, slot-object, t
  • Direct subclasses: numeric-and-category-dataset
65.2.1.2.2 Description

Dataset specialized in numeric values.

65.2.1.2.3 Direct Slots
65.2.1.2.3.1 Slot: numeric-points
  • Value type: simple-array
  • Initial value: (ERROR "Must specify points of the dataset.")
  • Initargs: numeric-points
  • Allocation: instance
65.2.1.2.3.1.1 Accessors

65.2.1.2.3.1.1.1 Inherited Slot Accessor: dataset-numeric-points
65.2.1.2.3.1.1.1.1 Syntax
(dataset-numeric-points object)
65.2.1.2.3.1.1.1.2 Methods
  • (dataset-numeric-points (numeric-matrix-dataset numeric-matrix-dataset))
  • (dataset-numeric-points (numeric-dataset numeric-dataset))
65.2.1.2.4 Indirect Slots
65.2.1.2.4.1 Internal Slot: dimensions
  • Value type: simple-array
  • Initial value: (ERROR "Must specify the dimension information for the dataset.")
  • Initargs: dimensions
  • Allocation: instance

65.2.1.3 Inherited Class: numeric-matrix-and-category-dataset
65.2.1.3.1 Inheritance
  • Parent classes: numeric-matrix-dataset, category-dataset
  • Precedence list: numeric-matrix-and-category dataset, numeric-matrix-dataset, category-dataset, specialized dataset, dataset, standard object, slot-object, t
  • Direct subclasses: None.
65.2.1.3.2 Description

Dataset specialized in both numeric (as matrix) and category values.

65.2.1.3.3 Direct Slots
65.2.1.3.4 Indirect Slots
65.2.1.3.4.1 Slot: numeric-points
  • Value type: dmat
  • Initial value: (ERROR "Must specify points of the dataset.")
  • Initargs: numeric-points
  • Allocation: instance
65.2.1.3.4.2 Slot: category-points
  • Value type: simple-array
  • Initial value: (ERROR "Must specify points of the dataset.")
  • Initargs: category-points
  • Allocation: instance
65.2.1.3.4.3 Internal Slot: dimensions
  • Value type: simple-array
  • Initial value: (ERROR "Must specify the dimension information for the dataset.")
  • Initargs: dimensions
  • Allocation: instance

65.2.1.4 Inherited Class: numeric-matrix-dataset
65.2.1.4.1 Inheritance
  • Parent classes: specialized-dataset
  • Precedence list: numeric-matrix-dataset, specialized-dataset, dataset, standard-object, slot-object, t
  • Direct subclasses: numeric-matrix-and-category dataset
65.2.1.4.2 Description

Dataset represented as matrix (2-dim CL array)

65.2.1.4.3 Direct Slots
65.2.1.4.3.1 Slot: numeric-points
  • Value type: dmat
  • Initial value: (ERROR "Must specify points of the dataset.")
  • Initargs: numeric-points
  • Allocation: instance
65.2.1.4.3.1.1 Accessors

65.2.1.4.3.1.1.1 Inherited Slot Accessor: dataset-numeric-points
65.2.1.4.3.1.1.1.1 Syntax
(dataset-numeric-points object)
65.2.1.4.3.1.1.1.2 Methods
  • (dataset-numeric-points (numeric-matrix-dataset numeric-matrix-dataset))
  • (dataset-numeric-points (numeric-dataset numeric-dataset))
65.2.1.4.4 Indirect Slots
65.2.1.4.4.1 Internal Slot: dimensions
  • Value type: simple-array
  • Initial value: (ERROR "Must specify the dimension information for the dataset.")
  • Initargs: dimensions
  • Allocation: instance

65.2.1.5 Inherited Class: specialized-dataset
65.2.1.5.1 Inheritance
  • Parent classes: dataset
  • Precedence list: specialized-dataset, dataset, standard-object, slot-object, t
  • Direct subclasses: time-series-dataset, numeric-matrix-dataset, category dataset, numeric-dataset
65.2.1.5.2 Description

Abstract datatype for specialized datasets.

65.2.1.5.3 Direct Slots
65.2.1.5.4 Indirect Slots
65.2.1.5.4.1 Internal Slot: dimensions
  • Value type: simple-array
  • Initial value: (ERROR "Must specify the dimension information for the dataset.")
  • Initargs: dimensions
  • Allocation: instance

65.2.1.6 Inherited Class: unspecialized-dataset
65.2.1.6.1 Inheritance
  • Parent classes: dataset
  • Precedence list: unspecialized-dataset, dataset, standard-object, slot-object, t
  • Direct subclasses: None.
65.2.1.6.2 Description

Unspecialized data, numeric value and category value are stored in one array.

65.2.1.6.3 Direct Slots
65.2.1.6.3.1 Slot: points
  • Value type: simple-array
  • Initial value: (ERROR "Must specify points of the dataset.")
  • Initargs: points
  • Allocation: instance
65.2.1.6.3.1.1 Accessors

65.2.1.6.3.1.1.1 Inherited Slot Accessor: dataset-points
65.2.1.6.3.1.1.1.1 Syntax
(dataset-points object)
65.2.1.6.3.1.1.1.2 Methods
  • (dataset-points (dataset specialized dataset))
  • (dataset-points (unspecialized-dataset unspecialized-dataset))
65.2.1.6.4 Indirect Slots
65.2.1.6.4.1 Internal Slot: dimensions
  • Value type: simple-array
  • Initial value: (ERROR "Must specify the dimension information for the dataset.")
  • Initargs: dimensions
  • Allocation: instance

65.2.2 External Functions


65.2.2.1 Inherited Function: choice-a-dimension
65.2.2.1.1 Syntax
(choice-a-dimension name data)
65.2.2.1.2 Description

Pick up a dimension as vector


65.2.2.2 Inherited Function: choice-dimensions
65.2.2.2.1 Syntax
(choice-dimensions names data)
65.2.2.2.2 Description

Pick up several dimensions as (vector vector)


65.2.2.3 Inherited Function: copy-dataset
65.2.2.3.1 Syntax
(copy-dataset dataset)
65.2.2.3.2 Description

65.2.2.4 Inherited Function: copy-dimension
65.2.2.4.1 Syntax
(copy-dimension dimension)
65.2.2.4.2 Description

65.2.2.5 Inherited Function: dataset-category-points
65.2.2.5.1 Syntax
(dataset-category-points object)
65.2.2.5.2 Description

65.2.2.6 Inherited Function: dataset-cleaning
65.2.2.6.1 Syntax
(dataset-cleaning d &key interp-types-alist outlier-types-alist
                  outlier-values-alist)
65.2.2.6.2 Description

Cleaning: Outlier verification and Interpolation


65.2.2.7 Inherited Function: dataset-dimensions
65.2.2.7.1 Syntax
(dataset-dimensions object)
65.2.2.7.2 Description

65.2.2.8 Inherited Function: dataset-numeric-points
65.2.2.8.1 Syntax
(dataset-numeric-points object)
65.2.2.8.2 Description

65.2.2.9 Inherited Function: dataset-points
65.2.2.9.1 Syntax
(dataset-points object)
65.2.2.9.2 Description

65.2.2.10 Inherited Function: dimension-index
65.2.2.10.1 Syntax
(dimension-index object)
65.2.2.10.2 Description

65.2.2.11 Inherited Function: dimension-metadata
65.2.2.11.1 Syntax
(dimension-metadata object)
65.2.2.11.2 Description

65.2.2.12 Inherited Function: dimension-name
65.2.2.12.1 Syntax
(dimension-name object)
65.2.2.12.2 Description

65.2.2.13 Inherited Function: dimension-type
65.2.2.13.1 Syntax
(dimension-type object)
65.2.2.13.2 Description

65.2.2.14 Inherited Function: divide-dataset
65.2.2.14.1 Syntax
(divide-dataset dataset &key divide-ratio random range except (range all))
65.2.2.14.2 Description

Divide dataset and restrict column


65.2.2.15 Inherited Function: make-bootstrap-sample-datasets
65.2.2.15.1 Syntax
(make-bootstrap-sample-datasets dataset &key (number-of-datasets 10))
65.2.2.15.2 Description

65.2.2.16 Inherited Function: make-dimension
65.2.2.16.1 Syntax
(make-dimension name type index &key metadata)
65.2.2.16.2 Description

65.2.2.17 Inherited Function: make-numeric-and-category-dataset
65.2.2.17.1 Syntax
(make-numeric-and-category-dataset all-column-names numeric-data
                                   numeric-indices category-data
                                   category-indices)
65.2.2.17.2 Description

65.2.2.18 Inherited Function: make-numeric-dataset
65.2.2.18.1 Syntax
(make-numeric-dataset all-column-names specialized-data)
65.2.2.18.2 Description

65.2.2.19 Inherited Function: make-numeric-matrix-and-category-dataset
65.2.2.19.1 Syntax
(make-numeric-matrix-and-category-dataset all-column-names numeric-data
                                          numeric-indices category-data
                                          category-indices)
65.2.2.19.2 Description

65.2.2.20 Inherited Function: make-numeric-matrix-dataset
65.2.2.20.1 Syntax
(make-numeric-matrix-dataset all-column-names specialized-matrix-data)
65.2.2.20.2 Description

65.2.2.21 Inherited Function: make-unspecialized-dataset
65.2.2.21.1 Syntax
(make-unspecialized-dataset all-column-names data &key (missing-value-check t)
                            missing-values-list (missing-value-test #'equalp))
65.2.2.21.2 Description

65.2.2.22 Inherited Function: pick-and-specialize-data
65.2.2.22.1 Syntax
(pick-and-specialize-data d &key (range all) except data-types
                          store-numeric-data-as-matrix)
65.2.2.22.2 Description

65.2.2.23 Inherited Function: read-data-from-file
65.2.2.23.1 Syntax
(read-data-from-file filename &key (type sexp)
                     (external-format default external-format-p) csv-type-spec
                     (csv-header-p t) (missing-value-check t)
                     missing-values-list)
65.2.2.23.2 Description

Convention: first line is column name.

66 Package: hjs.learn.vars

  • Uses: common-lisp
  • Used by: clml.test, clml.graph.graph-anomaly-detection, clml.graph.graph-centrality, clml.time-series.exponential-smoothing, clml.time-series.anomaly detection, clml.time series.autoregression, clml.time series.statistics, clml.time series.read-data, clml.pca, hjs.learn.k-means, hjs.learn.read data

66.1 Description

66.2 External Symbols

66.2.1 External Constants


66.2.1.1 Inherited Constant: *most-negative-exp-able-float*
66.2.1.1.1 Value
-744.4400719213812

Type: double-float

66.2.1.1.2 Description

66.2.1.2 Inherited Constant: *most-positive-exp-able-float*
66.2.1.2.1 Value
709.782712893384

Type: double-float

66.2.1.2.2 Description

66.2.2 External Global Variables


66.2.2.1 Inherited Variable: *epsilon*
66.2.2.1.1 Value
1.e-8

Type: double-float

66.2.2.1.2 Description

66.2.2.2 Inherited Variable: *workers*
66.2.2.2.1 Value
4

Type: integer

66.2.2.2.2 Description

67 Package: hjs.util.eigensystems

  • Uses: common-lisp, hjs.util.meta, hjs.util.vector, hjs.util.matrix, blas, lapack
  • Used by: clml.pca

67.1 Description

67.2 External Symbols

67.2.1 External Functions


67.2.1.1 Function: balanc
67.2.1.1.1 Syntax
(balanc a &key (radix 2.0))
67.2.1.1.2 Description

67.2.1.2 Function: eigen-by-householder-ql
67.2.1.2.1 Syntax
(eigen-by-householder-ql a)
67.2.1.2.2 Description

67.2.1.3 Function: eigen-by-jacobi
67.2.1.3.1 Syntax
(eigen-by-jacobi a)
67.2.1.3.2 Description

67.2.1.4 Function: eigen-by-power
67.2.1.4.1 Syntax
(eigen-by-power mat &key eigen-thld (from max) (precision 1.e-8))
67.2.1.4.2 Description

assume that mat is a positive definite matrix


67.2.1.5 Function: eigsrt
67.2.1.5.1 Syntax
(eigsrt d v)
67.2.1.5.2 Description

67.2.1.6 Function: elmhes
67.2.1.6.1 Syntax
(elmhes a)
67.2.1.6.2 Description

67.2.1.7 Function: jacobi
67.2.1.7.1 Syntax
(jacobi a)
67.2.1.7.2 Description

67.2.1.8 Function: tqli
67.2.1.8.1 Syntax
(tqli)
67.2.1.8.2 Description

67.2.1.9 Function: tred2
67.2.1.9.1 Syntax
(tred2)
67.2.1.9.2 Description

68 Package: hjs.util.matrix

  • Uses: common-lisp, hjs.util.meta, hjs.util.vector, blas, lapack
  • Used by: clml.test, clml.graph.graph-anomaly-detection, clml.graph.graph-centrality, clml.graph.shortest-path, clml.graph.graph-utils, clml.graph.read-graph, clml.time-series.anomaly-detection, clml.time-series.changefinder, clml.time-series.autoregression, clml.time-series.state-space, clml.time-series.statistics, clml.time-series.util, clml.classifiers.logistic-regression, clml.classifiers.linear-regression, clml.clustering.k-means2, clml.clustering.spectral-clustering, clml.clustering.optics, clml.clustering.nmf, clml.clustering.hc, clml.nearest-search.nearest, clml.nonparametric.lfm, clml.nonparametric.dpm, clml.nonparameteric.statistics, clml.svm.svr, clml.svm.smo, clml.svm.pwss3, clml.svm.one class, clml.svm.wss3, clml.pca, clml.decision tree.decision-tree, hjs.util.eigensystems, hjs.learn.k-means, hjs.learn.read-data

68.1 Description

68.2 External Symbols

68.2.1 External Types


68.2.1.1 Inherited Type: dmat

68.2.1.2 Inherited Type: dmat

68.2.2 External Macros


68.2.2.1 Inherited Macro: make-dmat
68.2.2.1.1 Syntax
(make-dmat a b)
68.2.2.1.2 Description

68.2.2.2 Inherited Macro: ncol
68.2.2.2.1 Syntax
(ncol matrix)
68.2.2.2.2 Description

68.2.2.3 Inherited Macro: nrow
68.2.2.3.1 Syntax
(nrow matrix)
68.2.2.3.2 Description

68.2.3 External Functions


68.2.3.1 Inherited Function: append-mat
68.2.3.1.1 Syntax
(append-mat a b &key (direction diagonal))
68.2.3.1.2 Description

68.2.3.2 Inherited Function: c*mat
68.2.3.2.1 Syntax
(c*mat c mat)
68.2.3.2.2 Description

68.2.3.3 Inherited Function: copy-mat
68.2.3.3.1 Syntax
(copy-mat)
68.2.3.3.2 Description

68.2.3.4 Inherited Function: correlation-matrix
68.2.3.4.1 Syntax
(correlation-matrix trials &optional result)
68.2.3.4.2 Description

68.2.3.5 Inherited Function: covariance-matrix
68.2.3.5.1 Syntax
(covariance-matrix trials &optional result)
68.2.3.5.2 Description

68.2.3.6 Inherited Function: det
68.2.3.6.1 Syntax
(det mat)
68.2.3.6.2 Description

68.2.3.7 Inherited Function: diag
68.2.3.7.1 Syntax
(diag dim &optional (val 1.0))
68.2.3.7.2 Description

68.2.3.8 Inherited Function: flatmat2vecs
68.2.3.8.1 Syntax
(flatmat2vecs flatmat nrow &optional vecs)
68.2.3.8.2 Description

68.2.3.9 Inherited Function: flatmat2vecs
68.2.3.9.1 Syntax
(flatmat2vecs flatmat nrow &optional vecs)
68.2.3.9.2 Description

68.2.3.10 Inherited Function: m*m
68.2.3.10.1 Syntax
(m*m a b &optional result)
68.2.3.10.2 Description

68.2.3.11 Inherited Function: m*v
68.2.3.11.1 Syntax
(m*v m v &optional result)
68.2.3.11.2 Description

68.2.3.12 Inherited Function: mat2vecs
68.2.3.12.1 Syntax
(mat2vecs mat &optional vecs)
68.2.3.12.2 Description

68.2.3.13 Inherited Function: mat2vecs
68.2.3.13.1 Syntax
(mat2vecs mat &optional vecs)
68.2.3.13.2 Description

68.2.3.14 Inherited Function: mcm
68.2.3.14.1 Syntax
(mcm a b &key (c #'+))
68.2.3.14.2 Description

68.2.3.15 Inherited Function: m^-1
68.2.3.15.1 Syntax
(m^-1 a)
68.2.3.15.2 Description

68.2.3.16 Inherited Function: regularize-covariance
68.2.3.16.1 Syntax
(regularize-covariance cov-mat &key (alpha 0.01) (delta-min 1.e-8)
                       (det-thld 1.e-8))
68.2.3.16.2 Description

68.2.3.17 Inherited Function: row-aref
68.2.3.17.1 Syntax
(row-aref mat nrow &optional row-vec)
68.2.3.17.2 Description

68.2.3.18 Inherited Function: specialize-mat
68.2.3.18.1 Syntax
(specialize-mat array &key check)
68.2.3.18.2 Description

68.2.3.19 Inherited Function: standard-deviations
68.2.3.19.1 Syntax
(standard-deviations trials &optional result)
68.2.3.19.2 Description

68.2.3.20 Inherited Function: standard-deviations-from-covariance
68.2.3.20.1 Syntax
(standard-deviations-from-covariance covariance &optional result)
68.2.3.20.2 Description

68.2.3.21 Inherited Function: standardize
68.2.3.21.1 Syntax
(standardize trials)
68.2.3.21.2 Description

68.2.3.22 Inherited Function: sum-mat
68.2.3.22.1 Syntax
(sum-mat matrix &key (by row) initial)
68.2.3.22.2 Description

68.2.3.23 Inherited Function: tr
68.2.3.23.1 Syntax
(tr mat)
68.2.3.23.2 Description

68.2.3.24 Inherited Function: trans
68.2.3.24.1 Syntax
(trans vmatrix &key (element-type t))
68.2.3.24.2 Description

68.2.3.25 Inherited Function: transpose
68.2.3.25.1 Syntax
(transpose matrix &optional result)
68.2.3.25.2 Description

68.2.3.26 Inherited Function: transposev
68.2.3.26.1 Syntax
(transposev vmatrix)
68.2.3.26.2 Description

68.2.3.27 Inherited Function: vcv
68.2.3.27.1 Syntax
(vcv v w &key (c #'+))
68.2.3.27.2 Description

68.2.3.28 Inherited Function: vdotv
68.2.3.28.1 Syntax
(vdotv v1 v2)
68.2.3.28.2 Description

68.2.3.29 Inherited Function: vecs2flatmat
68.2.3.29.1 Syntax
(vecs2flatmat vecs &optional flatmat)
68.2.3.29.2 Description

68.2.3.30 Inherited Function: vecs2flatmat
68.2.3.30.1 Syntax
(vecs2flatmat vecs &optional flatmat)
68.2.3.30.2 Description

68.2.3.31 Inherited Function: vecs2mat
68.2.3.31.1 Syntax
(vecs2mat vecs &optional mat)
68.2.3.31.2 Description

68.2.3.32 Inherited Function: vecs2mat
68.2.3.32.1 Syntax
(vecs2mat vecs &optional mat)
68.2.3.32.2 Description

69 Package: hjs.util.meta

  • Uses: common-lisp
  • Used by: clml.graph.graph-anomaly detection, clml.graph.graph centrality, clml.graph.shortest-path, clml.graph.graph-utils, clml.graph.read-graph, clml.time-series.exponential-smoothing, clml.time-series.anomaly detection, clml.time series.changefinder, clml.time series.autoregression, clml.time series.state-space, clml.time series.statistics, clml.time-series.util, clml.time-series.read-data, clml.numeric.fast-fourier-transform, clml.classifiers.linear regression, clml.clustering.k-means2, clml.clustering.cluster validation, clml.clustering.spectral-clustering, clml.clustering.nmf, clml.clustering.hc, clml.nearest-search.k-nn-new, clml.nearest-search.nearest, clml.nearest-search.k-nn, clml.nonparametric.lfm, clml.nonparametric.hdp-hmm, clml.nonparametric.ihmm, clml.nonparametric.blocked-hdp-hmm, clml.nonparametric.sticky-hdp hmm, clml.nonparametric.hdp, clml.nonparametric.hdp-lda, clml.nonparametric.dpm, clml.nonparameteric.statistics, clml.svm.svr, clml.svm.smo, clml.svm.pwss3, clml.svm.one class, clml.svm.wss3, clml.svm.mu, clml.pca, hjs.util.eigensystems, hjs.learn.k-means, hjs.learn.read data, hjs.util.missing-value, hjs.util.matrix, hjs.util.vector

69.1 Description

69.2 External Symbols

69.2.1 External Types


69.2.1.1 Type: array-index

69.2.1.2 Type: cvec

69.2.1.3 Inherited Type: dmat

69.2.1.4 Internal Type: dvec

69.2.2 External Macros


69.2.2.1 Macro: *fl
69.2.2.1.1 Syntax
(*fl &rest double-floats)
69.2.2.1.2 Description

69.2.2.2 Macro: +fl
69.2.2.2.1 Syntax
(+fl &rest double-floats)
69.2.2.2.2 Description

69.2.2.3 Macro: -fl
69.2.2.3.1 Syntax
(-fl &rest double-floats)
69.2.2.3.2 Description

69.2.2.4 Macro: /fl
69.2.2.4.1 Syntax
(/fl &rest double-floats)
69.2.2.4.2 Description

69.2.2.5 Macro: defdoublefunc
69.2.2.5.1 Syntax
(defdoublefunc name input-arguments)
69.2.2.5.2 Description

69.2.2.6 Macro: defun-speedy
69.2.2.6.1 Syntax
(defun-speedy name
    lambda-list
  &body
  body)
69.2.2.6.2 Description

69.2.2.7 Internal Macro: dfloat
69.2.2.7.1 Syntax
(dfloat x)
69.2.2.7.2 Description

69.2.2.8 Macro: gethash-or-set
69.2.2.8.1 Syntax
(gethash-or-set key table gen-value)
69.2.2.8.2 Description

69.2.2.9 Macro: once-only
69.2.2.9.1 Syntax
(once-only names
  &body
  body)
69.2.2.9.2 Description

69.2.2.10 Macro: safe-/
69.2.2.10.1 Syntax
(safe-/ a b)
69.2.2.10.2 Description

Returns 0.0d0 when dividing by zero.


69.2.2.11 Macro: with-unique-names
69.2.2.11.1 Syntax
(with-unique-names (&rest bindings)
  &body
  body)
69.2.2.11.2 Description

69.2.3 External Functions


69.2.3.1 Function: batch-elt
69.2.3.1.1 Syntax
(batch-elt seq indexes &key (result-type 'list))
69.2.3.1.2 Description

69.2.3.2 Function: d-exp
69.2.3.2.1 Syntax
(d-exp x)
69.2.3.2.2 Description

69.2.3.3 Function: d-expt
69.2.3.3.1 Syntax
(d-expt base power)
69.2.3.3.2 Description

69.2.3.4 Inherited Function: flatmat2vecs
69.2.3.4.1 Syntax
(flatmat2vecs flatmat nrow &optional vecs)
69.2.3.4.2 Description

69.2.3.5 Function: get-underlying-1d-array
69.2.3.5.1 Syntax
(get-underlying-1d-array array)
69.2.3.5.2 Description

69.2.3.6 Inherited Function: make-dvec
69.2.3.6.1 Syntax
(make-dvec size &optional initial-element)
69.2.3.6.2 Description

69.2.3.7 Inherited Function: mat2vecs
69.2.3.7.1 Syntax
(mat2vecs mat &optional vecs)
69.2.3.7.2 Description

69.2.3.8 Function: split-seq-odd-even
69.2.3.8.1 Syntax
(split-seq-odd-even seq)
69.2.3.8.2 Description

69.2.3.9 Inherited Function: vecs2flatmat
69.2.3.9.1 Syntax
(vecs2flatmat vecs &optional flatmat)
69.2.3.9.2 Description

69.2.3.10 Inherited Function: vecs2mat
69.2.3.10.1 Syntax
(vecs2mat vecs &optional mat)
69.2.3.10.2 Description

70 Package: hjs.util.missing-value

  • Uses: common-lisp, hjs.util.vector, clml.statistics, hjs.util.meta
  • Used by: clml.test, clml.graph.graph-anomaly-detection, clml.graph.shortest-path, clml.time-series.burst-detection, clml.time-series.anomaly-detection, clml.time-series.changefinder, clml.time-series.state-space, clml.time-series.read-data, hjs.learn.read-data

70.1 Description

70.2 External Symbols

70.2.1 External Constants


70.2.1.1 Inherited Constant: *+inf*
70.2.1.1.1 Value
#.SB-EXT:DOUBLE-FLOAT-POSITIVE-INFINITY

Type: double-float

70.2.1.1.2 Description

70.2.1.2 Inherited Constant: *-inf*
70.2.1.2.1 Value
#.SB-EXT:DOUBLE-FLOAT-NEGATIVE-INFINITY

Type: double-float

70.2.1.2.2 Description

70.2.1.3 Inherited Constant: *c-nan*
70.2.1.3.1 Value
0

Type: bit

70.2.1.3.2 Description

70.2.1.4 Inherited Constant: *missing-values*
70.2.1.4.1 Value
(NIL "" "NA")

Type: cons

70.2.1.4.2 Description

70.2.1.5 Inherited Constant: *na*
70.2.1.5.1 Value
:NA

Type: keyword

70.2.1.5.2 Description

70.2.1.6 Inherited Constant: *nan*
70.2.1.6.1 Value
#<DOUBLE-FLOAT quiet NaN>

Type: double-float

70.2.1.6.2 Description

70.2.2 External Functions


70.2.2.1 Inherited Function: c-nan-p
70.2.2.1.1 Syntax
(c-nan-p value)
70.2.2.1.2 Description

70.2.2.2 Inherited Function: fill-na
70.2.2.2.1 Syntax
(fill-na seq &optional (predicate #'missing-value-p))
70.2.2.2.2 Description

70.2.2.3 Inherited Function: interpolate
70.2.2.3.1 Syntax
(interpolate seq &key (na-interp t) na-string (interp zero) (seq-type numeric))
70.2.2.3.2 Description

70.2.2.4 Inherited Function: missing-value-p
70.2.2.4.1 Syntax
(missing-value-p value &key (missing-values-list *missing-values*)
                 (test #'equalp))
70.2.2.4.2 Description

70.2.2.5 Inherited Function: na-p
70.2.2.5.1 Syntax
(na-p value &key na-string (type numeric))
70.2.2.5.2 Description

70.2.2.6 Inherited Function: nan-p
70.2.2.6.1 Syntax
(nan-p value)
70.2.2.6.2 Description

70.2.2.7 Inherited Function: outlier-verification
70.2.2.7.1 Syntax
(outlier-verification seq &key (type smirnov-grubbs) (outlier-value 0.05)
                      (user-test #'=) (seq-type numeric))
70.2.2.7.2 Description

71 Package: hjs.util.vector

  • Uses: common-lisp, hjs.util.meta
  • Used by: clml.test, clml.association-rule, clml.graph.graph-anomaly-detection, clml.graph.graph-centrality, clml.graph.shortest-path, clml.graph.graph-utils, clml.graph.read-graph, clml.time-series.exponential-smoothing, clml.time-series.anomaly-detection, clml.time-series.changefinder, clml.time-series.autoregression, clml.time-series.state-space, clml.time-series.statistics, clml.time-series.util, clml.time-series.read-data, clml.classifiers.logistic-regression, clml.clustering.k-means2, clml.clustering.cluster-validation, clml.clustering.hc, clml.nearest-search.k-nn-new, clml.nearest-search.nearest, clml.nearest-search.k-nn, clml.nonparametric.lfm, clml.nonparametric.dpm, clml.nonparameteric.statistics, clml.svm.svr, clml.svm.smo, clml.svm.pwss3, clml.svm.one class, clml.svm.wss3, clml.pca, hjs.util.eigensystems, hjs.learn.k-means, hjs.learn.read-data, hjs.util.missing value, hjs.util.matrix

71.1 Description

71.2 External Symbols

71.2.1 External Macros


71.2.1.1 Inherited Macro: do-vec
71.2.1.1.1 Syntax
(do-vec (var vector &key (type t) (start 0) end from-end setf-var index-var
         return)
  &body
  body
  &environment
  env)
71.2.1.1.2 Description

Iterate on array that is a kind of simple-array. e.g. (defun distance-to-origin (x) (declare (type dvec x)

#+allegro (:faslmode :immediate)) (let ((result 0.0)) (declare (type (double-float 0.0) result)) (do-vec (ex x :type double-float) (incf result (* ex ex))) (sqrt result)))


71.2.1.2 Inherited Macro: do-vecs
71.2.1.2.1 Syntax
(do-vecs (&rest binding-clauses)
  &body
  body
  &environment
  env)
71.2.1.2.2 Description

Parallelly iterate on multiple vectors. Accept parameters in do-vec except :return. e.g. (defun euclid-distance (x y) (declare (type dvec x y)

#+allegro (:faslmode :immediate)) (assert (= (length x) (length y))) (let ((result 0.0)) (declare (type (double-float 0.0) result)) (do-vecs ((ex x :type double-float) (ey y :type double-float)) (let ((diff (- ex ey))) (incf result (* diff diff)))) (sqrt result)))


71.2.1.3 Inherited Macro: par-do-vec
71.2.1.3.1 Syntax
(par-do-vec (var vector &key (type t) (start 0) end setf-var index-var return)
  &body
  body)
71.2.1.3.2 Description

71.2.2 External Functions


71.2.2.1 Inherited Function: copy-vec
71.2.2.1.1 Syntax
(copy-vec vec &optional target)
71.2.2.1.2 Description

71.2.2.2 Inherited Function: cosine-distance
71.2.2.2.1 Syntax
(cosine-distance)
71.2.2.2.2 Description

71.2.2.3 Inherited Function: distance-to-origin
71.2.2.3.1 Syntax
(distance-to-origin x)
71.2.2.3.2 Description

71.2.2.4 Inherited Function: euclid-distance
71.2.2.4.1 Syntax
(euclid-distance x y)
71.2.2.4.2 Description

71.2.2.5 Inherited Function: fill-vec
71.2.2.5.1 Syntax
(fill-vec vec default)
71.2.2.5.2 Description

71.2.2.6 Inherited Function: hausdorff-distance
71.2.2.6.1 Syntax
(hausdorff-distance xpts ypts &key (norm #'euclid-distance))
71.2.2.6.2 Description

71.2.2.7 Inherited Function: inner-product
71.2.2.7.1 Syntax
(inner-product x y)
71.2.2.7.2 Description

71.2.2.8 Inherited Function: inner-product-unsafe
71.2.2.8.1 Syntax
(inner-product-unsafe x y)
71.2.2.8.2 Description

71.2.2.9 Inherited Function: make-dvec
71.2.2.9.1 Syntax
(make-dvec size &optional initial-element)
71.2.2.9.2 Description

71.2.2.10 Inherited Function: make-dvec
71.2.2.10.1 Syntax
(make-dvec size &optional initial-element)
71.2.2.10.2 Description

71.2.2.11 Inherited Function: manhattan-distance
71.2.2.11.1 Syntax
(manhattan-distance)
71.2.2.11.2 Description

71.2.2.12 Inherited Function: mean-points
71.2.2.12.1 Syntax
(mean-points points &optional result)
71.2.2.12.2 Description

71.2.2.13 Inherited Function: normalize-vec
71.2.2.13.1 Syntax
(normalize-vec vec result)
71.2.2.13.2 Description

71.2.2.14 Inherited Function: reorder-dvec
71.2.2.14.1 Syntax
(reorder-dvec vector indices &optional (result (copy-seq vector)))
71.2.2.14.2 Description

71.2.2.15 Inherited Function: reorder-vec
71.2.2.15.1 Syntax
(reorder-vec vector indices &optional (result (copy-seq vector)))
71.2.2.15.2 Description

71.2.2.16 Inherited Function: specialize-vec
71.2.2.16.1 Syntax
(specialize-vec vector &key check)
71.2.2.16.2 Description

71.2.2.17 Inherited Function: v+
71.2.2.17.1 Syntax
(v+ x y result)
71.2.2.17.2 Description

71.2.2.18 Inherited Function: v-
71.2.2.18.1 Syntax
(v- x y result)
71.2.2.18.2 Description

71.2.2.19 Inherited Function: v-scale
71.2.2.19.1 Syntax
(v-scale vec n result)
71.2.2.19.2 Description

72 Package: lapack

  • Uses: blas, common-lisp
  • Used by: clml.clustering.nmf, hjs.util.eigensystems, hjs.util.matrix

72.1 Description

72.2 External Symbols

72.2.1 External Functions


72.2.1.1 Function: dbdsdc
72.2.1.1.1 Syntax
(dbdsdc uplo compq n d e u ldu vt ldvt q iq work iwork info)
72.2.1.1.2 Description

72.2.1.2 Function: dbdsqr
72.2.1.2.1 Syntax
(dbdsqr uplo n ncvt nru ncc d e vt ldvt u ldu c ldc work info)
72.2.1.2.2 Description

72.2.1.3 Function: ddisna
72.2.1.3.1 Syntax
(ddisna job m n d sep info)
72.2.1.3.2 Description

72.2.1.4 Function: dgebak
72.2.1.4.1 Syntax
(dgebak job side n ilo ihi scale m v ldv info)
72.2.1.4.2 Description

72.2.1.5 Function: dgebal
72.2.1.5.1 Syntax
(dgebal job n a lda ilo ihi scale info)
72.2.1.5.2 Description

72.2.1.6 Function: dgebd2
72.2.1.6.1 Syntax
(dgebd2 m n a lda d e tauq taup work info)
72.2.1.6.2 Description

72.2.1.7 Function: dgebrd
72.2.1.7.1 Syntax
(dgebrd m n a lda d e tauq taup work lwork info)
72.2.1.7.2 Description

72.2.1.8 Function: dgeev
72.2.1.8.1 Syntax
(dgeev jobvl jobvr n a lda wr wi vl ldvl vr ldvr work lwork info)
72.2.1.8.2 Description

72.2.1.9 Function: dgeevx
72.2.1.9.1 Syntax
(dgeevx balanc jobvl jobvr sense n a lda wr wi vl ldvl vr ldvr ilo ihi scale
        abnrm rconde rcondv work lwork iwork info)
72.2.1.9.2 Description

72.2.1.10 Function: dgehd2
72.2.1.10.1 Syntax
(dgehd2 n ilo ihi a lda tau work info)
72.2.1.10.2 Description

72.2.1.11 Function: dgehrd
72.2.1.11.1 Syntax
(dgehrd n ilo ihi a lda tau work lwork info)
72.2.1.11.2 Description

72.2.1.12 Function: dgelq2
72.2.1.12.1 Syntax
(dgelq2 m n a lda tau work info)
72.2.1.12.2 Description

72.2.1.13 Function: dgelqf
72.2.1.13.1 Syntax
(dgelqf m n a lda tau work lwork info)
72.2.1.13.2 Description

72.2.1.14 Function: dgeqr2
72.2.1.14.1 Syntax
(dgeqr2 m n a lda tau work info)
72.2.1.14.2 Description

72.2.1.15 Function: dgeqrf
72.2.1.15.1 Syntax
(dgeqrf m n a lda tau work lwork info)
72.2.1.15.2 Description

72.2.1.16 Function: dgesdd
72.2.1.16.1 Syntax
(dgesdd jobz m n a lda s u ldu vt ldvt work lwork iwork info)
72.2.1.16.2 Description

72.2.1.17 Function: dgesv
72.2.1.17.1 Syntax
(dgesv n nrhs a lda ipiv b ldb$ info)
72.2.1.17.2 Description

72.2.1.18 Function: dgesvd
72.2.1.18.1 Syntax
(dgesvd jobu jobvt m n a lda s u ldu vt ldvt work lwork info)
72.2.1.18.2 Description

72.2.1.19 Function: dgetf2
72.2.1.19.1 Syntax
(dgetf2 m n a lda ipiv info)
72.2.1.19.2 Description

72.2.1.20 Function: dgetrf
72.2.1.20.1 Syntax
(dgetrf m n a lda ipiv info)
72.2.1.20.2 Description

72.2.1.21 Function: dgetri
72.2.1.21.1 Syntax
(dgetri n a lda ipiv work lwork info)
72.2.1.21.2 Description

72.2.1.22 Function: dgetrs
72.2.1.22.1 Syntax
(dgetrs trans n nrhs a lda ipiv b ldb$ info)
72.2.1.22.2 Description

72.2.1.23 Function: dhseqr
72.2.1.23.1 Syntax
(dhseqr job compz n ilo ihi h ldh wr wi z ldz work lwork info)
72.2.1.23.2 Description

72.2.1.24 Function: dlabad
72.2.1.24.1 Syntax
(dlabad small large)
72.2.1.24.2 Description

72.2.1.25 Function: dlabrd
72.2.1.25.1 Syntax
(dlabrd m n nb a lda d e tauq taup x ldx y ldy)
72.2.1.25.2 Description

72.2.1.26 Function: dlacon
72.2.1.26.1 Syntax
(dlacon n v x isgn est kase)
72.2.1.26.2 Description

72.2.1.27 Function: dlacpy
72.2.1.27.1 Syntax
(dlacpy uplo m n a lda b ldb$)
72.2.1.27.2 Description

72.2.1.28 Function: dladiv
72.2.1.28.1 Syntax
(dladiv a b c d p q)
72.2.1.28.2 Description

72.2.1.29 Function: dlaed6
72.2.1.29.1 Syntax
(dlaed6 kniter orgati rho d z finit tau info)
72.2.1.29.2 Description

72.2.1.30 Function: dlaexc
72.2.1.30.1 Syntax
(dlaexc wantq n t$ ldt q ldq j1 n1 n2 work info)
72.2.1.30.2 Description

72.2.1.31 Function: dlahqr
72.2.1.31.1 Syntax
(dlahqr wantt wantz n ilo ihi h ldh wr wi iloz ihiz z ldz info)
72.2.1.31.2 Description

72.2.1.32 Function: dlahrd
72.2.1.32.1 Syntax
(dlahrd n k nb a lda tau t$ ldt y ldy)
72.2.1.32.2 Description

72.2.1.33 Function: dlaln2
72.2.1.33.1 Syntax
(dlaln2 ltrans na nw smin ca a lda d1 d2 b ldb$ wr wi x ldx scale xnorm info)
72.2.1.33.2 Description

72.2.1.34 Function: dlamc1
72.2.1.34.1 Syntax
(dlamc1 beta t$ rnd ieee1)
72.2.1.34.2 Description

72.2.1.35 Function: dlamc2
72.2.1.35.1 Syntax
(dlamc2 beta t$ rnd eps emin rmin emax rmax)
72.2.1.35.2 Description

72.2.1.36 Function: dlamc3
72.2.1.36.1 Syntax
(dlamc3 a b)
72.2.1.36.2 Description

72.2.1.37 Function: dlamc4
72.2.1.37.1 Syntax
(dlamc4 emin start base)
72.2.1.37.2 Description

72.2.1.38 Function: dlamc5
72.2.1.38.1 Syntax
(dlamc5 beta p emin ieee emax rmax)
72.2.1.38.2 Description

72.2.1.39 Function: dlamch
72.2.1.39.1 Syntax
(dlamch cmach)
72.2.1.39.2 Description

72.2.1.40 Function: dlamrg
72.2.1.40.1 Syntax
(dlamrg n1 n2 a dtrd1 dtrd2 indx)
72.2.1.40.2 Description

72.2.1.41 Function: dlange
72.2.1.41.1 Syntax
(dlange norm m n a lda work)
72.2.1.41.2 Description

72.2.1.42 Function: dlanhs
72.2.1.42.1 Syntax
(dlanhs norm n a lda work)
72.2.1.42.2 Description

72.2.1.43 Function: dlanst
72.2.1.43.1 Syntax
(dlanst norm n d e)
72.2.1.43.2 Description

72.2.1.44 Function: dlanv2
72.2.1.44.1 Syntax
(dlanv2 a b c d rt1r rt1i rt2r rt2i cs sn)
72.2.1.44.2 Description

72.2.1.45 Function: dlapy2
72.2.1.45.1 Syntax
(dlapy2 x y)
72.2.1.45.2 Description

72.2.1.46 Function: dlaqtr
72.2.1.46.1 Syntax
(dlaqtr ltran lreal n t$ ldt b w scale x work info)
72.2.1.46.2 Description

72.2.1.47 Function: dlarf
72.2.1.47.1 Syntax
(dlarf side m n v incv tau c ldc work)
72.2.1.47.2 Description

72.2.1.48 Function: dlarfb
72.2.1.48.1 Syntax
(dlarfb side trans direct storev m n k v ldv t$ ldt c ldc work ldwork)
72.2.1.48.2 Description

72.2.1.49 Function: dlarfg
72.2.1.49.1 Syntax
(dlarfg n alpha x incx tau)
72.2.1.49.2 Description

72.2.1.50 Function: dlarft
72.2.1.50.1 Syntax
(dlarft direct storev n k v ldv tau t$ ldt)
72.2.1.50.2 Description

72.2.1.51 Function: dlarfx
72.2.1.51.1 Syntax
(dlarfx side m n v tau c ldc work)
72.2.1.51.2 Description

72.2.1.52 Function: dlartg
72.2.1.52.1 Syntax
(dlartg f g cs sn r)
72.2.1.52.2 Description

72.2.1.53 Function: dlas2
72.2.1.53.1 Syntax
(dlas2 f g h ssmin ssmax)
72.2.1.53.2 Description

72.2.1.54 Function: dlascl
72.2.1.54.1 Syntax
(dlascl type kl ku cfrom cto m n a lda info)
72.2.1.54.2 Description

72.2.1.55 Function: dlasd0
72.2.1.55.1 Syntax
(dlasd0 n sqre d e u ldu vt ldvt smlsiz iwork work info)
72.2.1.55.2 Description

72.2.1.56 Function: dlasd1
72.2.1.56.1 Syntax
(dlasd1 nl nr sqre d alpha beta u ldu vt ldvt idxq iwork work info)
72.2.1.56.2 Description

72.2.1.57 Function: dlasd2
72.2.1.57.1 Syntax
(dlasd2 nl nr sqre k d z alpha beta u ldu vt ldvt dsigma u2 ldu2 vt2 ldvt2 idxp
        idx idxc idxq coltyp info)
72.2.1.57.2 Description

72.2.1.58 Function: dlasd3
72.2.1.58.1 Syntax
(dlasd3 nl nr sqre k d q ldq dsigma u ldu u2 ldu2 vt ldvt vt2 ldvt2 idxc ctot z
        info)
72.2.1.58.2 Description

72.2.1.59 Function: dlasd4
72.2.1.59.1 Syntax
(dlasd4 n i d z delta rho sigma work info)
72.2.1.59.2 Description

72.2.1.60 Function: dlasd5
72.2.1.60.1 Syntax
(dlasd5 i d z delta rho dsigma work)
72.2.1.60.2 Description

72.2.1.61 Function: dlasd6
72.2.1.61.1 Syntax
(dlasd6 icompq nl nr sqre d vf vl alpha beta idxq perm givptr givcol ldgcol
        givnum ldgnum poles difl difr z k c s work iwork info)
72.2.1.61.2 Description

72.2.1.62 Function: dlasd7
72.2.1.62.1 Syntax
(dlasd7 icompq nl nr sqre k d z zw vf vfw vl vlw alpha beta dsigma idx idxp
        idxq perm givptr givcol ldgcol givnum ldgnum c s info)
72.2.1.62.2 Description

72.2.1.63 Function: dlasd8
72.2.1.63.1 Syntax
(dlasd8 icompq k d z vf vl difl difr lddifr dsigma work info)
72.2.1.63.2 Description

72.2.1.64 Function: dlasda
72.2.1.64.1 Syntax
(dlasda icompq smlsiz n sqre d e u ldu vt k difl difr z poles givptr givcol
        ldgcol perm givnum c s work iwork info)
72.2.1.64.2 Description

72.2.1.65 Function: dlasdq
72.2.1.65.1 Syntax
(dlasdq uplo sqre n ncvt nru ncc d e vt ldvt u ldu c ldc work info)
72.2.1.65.2 Description

72.2.1.66 Function: dlasdt
72.2.1.66.1 Syntax
(dlasdt n lvl nd inode ndiml ndimr msub)
72.2.1.66.2 Description

72.2.1.67 Function: dlaset
72.2.1.67.1 Syntax
(dlaset uplo m n alpha beta a lda)
72.2.1.67.2 Description

72.2.1.68 Function: dlasq1
72.2.1.68.1 Syntax
(dlasq1 n d e work info)
72.2.1.68.2 Description

72.2.1.69 Function: dlasq2
72.2.1.69.1 Syntax
(dlasq2 n z info)
72.2.1.69.2 Description

72.2.1.70 Function: dlasq3
72.2.1.70.1 Syntax
(dlasq3 i0 n0 z pp dmin sigma desig qmax nfail iter ndiv ieee)
72.2.1.70.2 Description

72.2.1.71 Function: dlasq4
72.2.1.71.1 Syntax
(dlasq4 i0 n0 z pp n0in dmin dmin1$ dmin2 dn dn1 dn2 tau ttype)
72.2.1.71.2 Description

72.2.1.72 Function: dlasq5
72.2.1.72.1 Syntax
(dlasq5 i0 n0 z pp tau dmin dmin1$ dmin2 dn dnm1 dnm2 ieee)
72.2.1.72.2 Description

72.2.1.73 Function: dlasq6
72.2.1.73.1 Syntax
(dlasq6 i0 n0 z pp dmin dmin1$ dmin2 dn dnm1 dnm2)
72.2.1.73.2 Description

72.2.1.74 Function: dlasr
72.2.1.74.1 Syntax
(dlasr side pivot direct m n c s a lda)
72.2.1.74.2 Description

72.2.1.75 Function: dlasrt
72.2.1.75.1 Syntax
(dlasrt id n d info)
72.2.1.75.2 Description

72.2.1.76 Function: dlassq
72.2.1.76.1 Syntax
(dlassq n x incx scale sumsq)
72.2.1.76.2 Description

72.2.1.77 Function: dlasv2
72.2.1.77.1 Syntax
(dlasv2 f g h ssmin ssmax snr csr snl csl)
72.2.1.77.2 Description

72.2.1.78 Function: dlaswp
72.2.1.78.1 Syntax
(dlaswp n a lda k1 k2 ipiv incx)
72.2.1.78.2 Description

72.2.1.79 Function: dlasy2
72.2.1.79.1 Syntax
(dlasy2 ltranl ltranr isgn n1 n2 tl ldtl tr ldtr b ldb$ scale x ldx xnorm info)
72.2.1.79.2 Description

72.2.1.80 Function: dorg2r
72.2.1.80.1 Syntax
(dorg2r m n k a lda tau work info)
72.2.1.80.2 Description

72.2.1.81 Function: dorgbr
72.2.1.81.1 Syntax
(dorgbr vect m n k a lda tau work lwork info)
72.2.1.81.2 Description

72.2.1.82 Function: dorghr
72.2.1.82.1 Syntax
(dorghr n ilo ihi a lda tau work lwork info)
72.2.1.82.2 Description

72.2.1.83 Function: dorgl2
72.2.1.83.1 Syntax
(dorgl2 m n k a lda tau work info)
72.2.1.83.2 Description

72.2.1.84 Function: dorglq
72.2.1.84.1 Syntax
(dorglq m n k a lda tau work lwork info)
72.2.1.84.2 Description

72.2.1.85 Function: dorgqr
72.2.1.85.1 Syntax
(dorgqr m n k a lda tau work lwork info)
72.2.1.85.2 Description

72.2.1.86 Function: dorm2r
72.2.1.86.1 Syntax
(dorm2r side trans m n k a lda tau c ldc work info)
72.2.1.86.2 Description

72.2.1.87 Function: dormbr
72.2.1.87.1 Syntax
(dormbr vect side trans m n k a lda tau c ldc work lwork info)
72.2.1.87.2 Description

72.2.1.88 Function: dorml2
72.2.1.88.1 Syntax
(dorml2 side trans m n k a lda tau c ldc work info)
72.2.1.88.2 Description

72.2.1.89 Function: dormlq
72.2.1.89.1 Syntax
(dormlq side trans m n k a lda tau c ldc work lwork info)
72.2.1.89.2 Description

72.2.1.90 Function: dormqr
72.2.1.90.1 Syntax
(dormqr side trans m n k a lda tau c ldc work lwork info)
72.2.1.90.2 Description

72.2.1.91 Function: dtrevc
72.2.1.91.1 Syntax
(dtrevc side howmny select n t$ ldt vl ldvl vr ldvr mm m work info)
72.2.1.91.2 Description

72.2.1.92 Function: dtrexc
72.2.1.92.1 Syntax
(dtrexc compq n t$ ldt q ldq ifst ilst work info)
72.2.1.92.2 Description

72.2.1.93 Function: dtrsna
72.2.1.93.1 Syntax
(dtrsna job howmny select n t$ ldt vl ldvl vr ldvr s sep mm m work ldwork iwork
        info)
72.2.1.93.2 Description

72.2.1.94 Function: dtrti2
72.2.1.94.1 Syntax
(dtrti2 uplo diag n a lda info)
72.2.1.94.2 Description

72.2.1.95 Function: dtrtri
72.2.1.95.1 Syntax
(dtrtri uplo diag n a lda info)
72.2.1.95.2 Description

72.2.1.96 Function: ieeeck
72.2.1.96.1 Syntax
(ieeeck ispec zero one)
72.2.1.96.2 Description

72.2.1.97 Function: ilaenv
72.2.1.97.1 Syntax
(ilaenv ispec name opts n1 n2 n3 n4)
72.2.1.97.2 Description

72.3 clml.statistics Statistics

72.4 Requirements

The package does not depend on any libraries (yet). Any ANSI-compliant Common Lisp should be enough. However, to load it easily, you need the ASDF package (http://www.cliki.net/asdf).

72.5 Usage

72.5.1 One-valued data

There is a range of functions that operate on a sequence of data.

72.5.1.1 mean (seq)

Returns the mean of SEQ.

72.5.1.2 median (seq)

Returns the median of SEQ. (Variant: median-on-sorted (sorted-seq))

72.5.1.3 discrete-quantile (seq cuts)

Returns the quantile(s) of SEQ at the given cut point(s). CUTS can be a single value or a list. (Variant: discrete-quantile-on-sorted (sorted-seq cuts))

72.5.1.4 five-number-summary (seq)

Returns the "five number summary" of SEQ, ie. the discrete quantiles at the cut points 0, 1/4, 1/2, 3/4 and 1. (Variant: five-number-summary-on-sorted (sorted-seq))

72.5.1.5 range (seq)

Returns the difference of the maximal and minimal element of SEQ.

72.5.1.6 interquartile-range (seq)

Returns the interquartile range of SEQ, ie. the difference of the discrete quantiles at 3/4 and 1/4. (Variant: interquartile-range-on-sorted (sorted-seq))

72.5.1.7 mean-deviation (seq)

Returns the mean deviation of SEQ.

72.5.1.8 variance (seq)

Returns the variance of SEQ.

72.5.1.9 standard-deviation (seq &key populationp)

Returns the standard deviation of SEQ. If populationp is true, the returned value is the population standard deviation. Otherwise, it is the sample standard deviation.

72.5.2 Two-valued data

These functions operate on two sequences.

72.5.2.1 covariance (seq1 seq2)

Returns the covariance of SEQ1 and SEQ2.

72.5.2.2 linear-regression (seq1 seq2)

Fits a line y = A + Bx on the data points from SEQ1 x SEQ2. Returns (A B).

72.5.2.3 correlation-coefficient (seq1 seq2)

Returns the correlation coefficient of SEQ1 and SEQ2, ie. covariance / (standard-deviation1 * standard-deviation2).

72.5.2.4 spearman-rank-correlation (seq1 seq2)

Returns the Spearman rank correlation, ie. the coefficient based on just the relative size of the given values.

72.5.2.5 kendall-rank-correlation (seq1 seq2)

Returns the Kendall "tau" rank correlation coefficient.

72.5.3 Distributions

Distributions are CLOS objects, and they are created by the constructor of the same name. The objects support the methods CDF (cumulative distribution function), DENSITY (MASS for discrete distributions), QUANTILE, RAND (gives a random number according to the given distribution), RAND-N (convenience function that gives n random numbers), MEAN and VARIANCE (giving the distribution's mean and variance, respectively). These take the distribution as their first parameter.

Most distributions can also be created with an estimator constructor. The estimator function has the form <distribution>-ESTIMATE, unless noted.

The following distributions are supported:

72.5.3.1 beta-distribution
  • Parameters: shape1 shape2
72.5.3.2 binomial-distribution
  • Parameters: size, probability
72.5.3.3 cauchy-distribution
  • Parameters: location, scale
72.5.3.4 chi-square-distribution
  • Parameters: degree
  • Estimators: [none]
72.5.3.5 exponential-distribution
  • Parameters: hazard (or scale)
72.5.3.6 f-distribution
  • Parameters: degree1 degree2
  • Estimators: [none]
72.5.3.7 gamma-distribution
  • Parameters: scale, shape
  • (Variant: erlang-distribution [shape is an integer])
  • Numerical calculation: If there is a numerical problem with QUANTILE, QUANTILE-ILI would be solve it.
    ILI is abbreviation of the numerical calculation method of Inverse-Linear-Interpolation.
    However this is slower than Newton-Raphson(for QUANTILE).
72.5.3.8 geometric-distribution
  • Parameters: probability
  • (Supported on k = 1, 2, … (the # of trials until a success, inclusive))
72.5.3.9 hypergeometric-distribution
  • Parameters: elements, successes, samples
  • Estimators: hypergeometric-distribution-estimate-successes-unbiased, hypergeometric-distribution-estimate-successes-maximum-likelihood, hypergeometric-distribution-estimate-elements
72.5.3.10 logistic-distribution
  • Parameters: location, scale
72.5.3.11 log-normal-distribution
  • Parameters: expected-value, deviation
  • Estimators: log-normal-distribution-estimate-unbiased, log-normal-distribution-estimate-maximum-likelihood
72.5.3.12 negative-binomial-distribution
  • Parameters: successes, probability, failuresp
  • Estimators: negative-binomial-distribution-estimate-unbiased, negative-binomial-distribution-estimate-maximum-likelihood
  • When failuresp is NIL, the distribution is supported on k = s, s+1, … (the # of trials until a given number of successes, inclusive))
  • When failuresp is T (the default), it is supported on k = 0, 1, … (the # of failures until a given number of successes, inclusive)
  • Estimators also have the failuresp parameter
  • (Variant: geometric-distribution [successes = 1, failuresp = nil])
72.5.3.13 normal-distribution
  • Parameters: expected-value, deviation
  • Estimators: normal-distribution-estimate-unbiased, normal-distribution-estimate-maximum-likelihood
  • (Variant: standard-normal-distribution)
72.5.3.14 poisson-distribution
  • Parameters: rate
72.5.3.15 t-distribution
  • Parameters: degree
  • Estimators: [none]
72.5.3.16 uniform-distribution
  • Parameters: from, to
  • Estimators: uniform-distribution-estimate-moments, uniform-distribution-estimate-maximum-likelihood
  • (Variant: standard-uniform-distribution)
72.5.3.17 weibull-distribution
  • Parameters: scale, shape

72.5.4 Distribution tests

72.5.4.1 normal-dist-test
  • Input: frequation sequence, infimum of the first class, class width, precision
  • Output( 3 values of property-list )
    • result (:TOTAL total-frequency :MEAN mean :VARIANCE variance :SD standard-deviation)
    • table (:MID mid-value-of-each-class :FREQ frequency-of-each-class :Z standard-score :CDF cummulative-distribution-frequency :EXPECTATION expectation)
    • result2 (:CHI-SQ Chi-square-statistics :D.F. Degree-of-freedom :P-VALUE p-value)
72.5.4.2 poisson-dist-test
  • Input: sequence of frequency
  • Output( 3 values of p-list )
    • result (:N total-frequency :MEAN mean)
    • table (:C-ID assumed-class-value :FREQ frequency :P probability :E expectation)
    • result2 (:CHI-SQ Chi-square-statistics :D.F. Degree-of-freedom :P-VALUE p-value)
72.5.4.3 binom-dist-test
  • Input: sequence of frequency, sequence of class-value, size of Bernoulli trials
  • Output( 3 values of p-list )
    • result (:D-SIZE total-frequency :PROBABILITY population-rate)
    • table (:FREQ frequency :P probability :E expectation)
    • result2 (:CHI-SQ Chi-square-statistics :D.F. Degree-of-freedom :P-VALUE p-value)

72.5.5 Outlier verification

72.5.5.1 smirnov-grubbs (seq alpha &key (type :max) (recursive nil))

Smirnov-Grubbs method for outlier verification.

72.5.6 Sample listener log

72.5.6.1 Loading without ASDF
(assuming you are in the directory where the library resides)
CL-USER> (load "package")
T
CL-USER> (load "utilities")
T
CL-USER> (load "math")
T
CL-USER> (load "statistics")
T
CL-USER> (load "distribution-test")
T
CL-USER> (in-package :statistics)
#
STAT> 
72.5.6.2 Loading with ASDF
(assuming that the path to statistics.asd is in ASDF:*CENTRAL-REGISTRY*)
CL-USER> (asdf:operate 'asdf:load-op 'statistics)
; loading system definition from ~/.sbcl/systems/statistics.asd
; into #
; registering # as STATISTICS
NIL
CL-USER> (in-package :statistics)
#
STAT> 
72.5.6.3 Simple usage (examples taken from "Lisp-Statによる統計解析入門" by 垂水共之)
72.5.6.3.1 One-valued data
STAT> (defparameter height '(148 160 159 153 151 140 156 137 149 160 151 157 157 144))
HEIGHT
STAT> (mean height)
1061/7
STAT> (+ (mean height) 0.0d0)
151.57142857142858d0
STAT> (median height)
152
STAT> (five-number-summary height)
(137 297/2 152 157 160)
STAT> (mapcar (lambda (x) (discrete-quantile height x)) '(0 1/4 1/2 3/4 1))
(137 297/2 152 157 160)
STAT> (interquartile-range height)
17/2
STAT> (+ (mean-deviation height) 0.0d0)
5.857142857142857d0
STAT> (+ (variance height) 0.0d0)
50.10204081632653d0
STAT> (standard-deviation height)
7.345477789500419d0
STAT> 
72.5.6.3.2 Two-valued data
STAT> (defparameter weight '(41 49 45 43 42 29 49 31 47 47 42 39 48 36))
WEIGHT
STAT> (linear-regression height weight)
(-70.15050916496945d0 0.7399185336048879d0)
STAT> (+ (covariance height weight) 0.0d0)
39.92307692307692d0
STAT> (correlation-coefficient height weight)
0.851211920646571d0
STAT> (defparameter baseball-teams '((3 2 1 5 4 6) (2 6 3 5 1 4))
    "Six baseball teams are ranked by two people in order of liking.")
BASEBALL-TEAMS
STAT> (+ (apply #'spearman-rank-correlation baseball-teams) 0.0d0)
0.02857142857142857d0
STAT> (+ (apply #'kendall-rank-correlation baseball-teams) 0.0d0)
-0.06666666666666667d0
STAT> 
72.5.6.3.3 Distributions
STAT> (quantile (standard-normal-distribution) 0.025d0)
-1.9599639551896222d0
STAT> (density (standard-uniform-distribution) 1.5d0)
0
STAT> (cdf (standard-uniform-distribution) 0.3d0)
0.3d0
STAT> (defparameter normal-random (rand-n (standard-normal-distribution) 1000))
NORMAL-RANDOM
STAT> (five-number-summary normal-random)
(-3.048454339464769d0 -0.6562483981626692d0 -0.0378855048937908d0
 0.6292440569288786d0 3.3461196116924925d0)
STAT> (mean normal-random)
-0.003980893528421081d0
STAT> (standard-deviation normal-random)
0.9586638291006542d0
STAT> (quantile (t-distribution 5) 0.05d0)
-2.0150483733330242d0
STAT> (density (t-distribution 10) 1.0d0)
0.23036198922913856d0
STAT> (defparameter chi-random (rand-n (chi-square-distribution 10) 1000))
CHI-RANDOM
STAT> (mean chi-random)
10.035727383909936d0
STAT> (standard-deviation chi-random)
4.540307733714504d0
STAT> 
72.5.6.3.4 Distribution tests (examples taken from http://aoki2.si.gunma-u.ac.jp/R/)
STAT(6): (normal-dist-test '(4 19 86 177 105 33 2) 40 5 0.1)
(:TOTAL 426 :MEAN 57.931225 :VARIANCE 26.352928 :SD 5.13351)
(:MID (37.45 42.45 47.45 52.45 57.45 62.45 67.45 72.45 77.45) :FREQ
(0 4 19 86 177 105 33 2 0) :Z
(-3.5027153 -2.5287228 -1.5547304 -0.58073795 0.3932545 1.3672462
 2.3412387 3.315231 4.2892237)
:CDF
(2.3027066827641107d-4 0.005493650023016494d0 0.0542812231219722d0
 0.2207033969433026d0 0.3722256949242654d0 0.2612916822967053d0
 0.07616414571442975d0 0.009152099332533692d0 4.578369754981715d-4)
:EXPECTATION
(0.09809530468575112d0 2.4383902144907776d0 23.123801049960157d0
 94.01964709784691d0 158.56814603773705d0 111.31025665839645d0
 32.44592607434708d0 4.093832867221574d0 0.19503855156222105d0))
(:CHI-SQ 6.000187256825313d0 :D.F. 4 :P-VALUE 0.19913428945535006d0)

STAT(10): (poisson-dist-test '(27 61 77 71 54 35 20 11 6 2 1))
(:N 365 :MEAN 1092/365)
(:C-ID (0 1 2 3 4 5 6 7 8 9 ...) :FREQ (27 61 77 71 54 35 20 11 6 2 ...)
 :P
 (0.050197963 0.1501813 0.22465476 0.22403927 0.1675691 0.100266
  0.04999565 0.021368004 0.0079910485 0.002656385 ...)
 :E
 (18.322256 54.816174 81.998985 81.77434 61.162724 36.59709 18.248411
  7.7993217 2.9167328 0.96958053 ...))
(:CHI-SQ 14.143778 :D.F. 8 :P-VALUE 0.07809402061210624d0)

STAT(16): (binom-dist-test '(2 14 20 34 22 8) '(0 1 2 3 4 5) 5)
                           (binom-dist-test '(2 14 20 34 22 8) '(0 1 2 3 4 5) 5)
(:SIZE 6 :PROBABILITY 0.568)
(:FREQ (2 14 20 34 22 8) :P
 (0.015045918 0.098912984 0.26010454 0.3419893 0.22482634 0.059121) :E
 (1.5045917 9.891298 26.010454 34.198933 22.482634 5.9121003))
(:CHI-SQ 4.007576 :D.F. 4 :P-VALUE 0.4049815220790788d0)
72.5.6.3.5 Outlier verification
STAT(6): (defparameter *sample*
             '(133 134 134 134 135 135 139 140 140 140 141 142 142 144 144 147 147 149 150 164))

STAT(7): (smirnov-grubbs *sample* 0.05 :type :max)
Data: MAX = 164.000
t= 3.005, p-value = 2.557, df = 18

STAT(8): (smirnov-grubbs *sample* 0.05 :type :min)
Data: MIN = 133.000
t= 1.172, p-value = 2.557, df = 18

STAT(11): (smirnov-grubbs *sample* 0.05 :type :max :recursive t)
(133 134 134 134 135 135 139 140 140 140 ...)

STAT(12): (set-difference *sample* *)
(164)

72.6 Notes

  • Numbers are not converted to (double) floats, for better accuracy with whole number data. This should be OK, since double data will generate double results (the number type is preserved).
  • Places marked with TODO are not optimal or not finished (see the TODO file for more details).

73 Licensing

CLML is licensed under the terms of the Lisp Lesser GNU Public License, known as the LLGPL and distributed with CLML as the file "LICENSE". The LLGPL consists of a preamble and the LGPL, which is distributed with CLML as the file "LGPL". Where these conflict, the preamble takes precedence.

The LGPL is also available online at: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

The LLGPL is also available online at: http://opensource.franz.com/preamble.html

74 Supported CL implementations

This library supports ANSI Common Lisp. That said there are differences among implementations. SBCL and Allegro Lisp and Lisp Works should be the best supported. Currently Clozure Common Lisp is having issues with certain BLAS functionality so some portions may not work under that implementation.

Current development is taking place under Linux, that said this library should function under Windows and OSX.

Created: 2014-07-20 Sun 22:01

Emacs 24.4.50.1 (Org mode 8.2.6)

Validate